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ABSTRACT

This study examines the heterogeneous causal effects of climate-driven cooling demand on U.S.
household electricity consumption using 2020 Residential Energy Consumption Survey data and
a causal machine learning framework. Estimates of conditional average treatment effect (CATE),
conditional quantile treatment effect (CQTE), and conditional super quantile treatment effect
(CSQTE) show substantial increases in electricity consumption under elevated cooling degree days
(CDD), with average effects of 32—-34% and disproportionate burdens concentrated among lower-
consuming households. OLS projections of CATE, CQTE, and CSQTE estimates highlight
significant subgroup variation: households with central AC and evaporative coolers, middle-
income earners ($60k—$79k), and minority racial groups face the highest burdens, while single-
family homes exhibit consistently stronger responses than apartments or mobile homes.
Robustness checks using alternative treatment definitions (CDD above the 75th percentile and 30-
year average CDD) confirm the stability of results. These findings underscore that climate-driven
cooling demand exacerbates distributional inequalities in energy use, reinforcing the need for
targeted efficiency and adaptation policies that account for subgroup vulnerabilities.



1.0  Introduction

Rising heat exposure under climate change is reshaping residential electricity use in uneven ways
across households and regions, with implications for affordability, peak-load management, and
equity (Hernandez 2013; Carley and Konisky 2020; Bednar and Reames 2020). In the United
States, cooling needs are an increasingly salient driver of household demand as heatwaves
intensify and lengthen, shifting seasonal load profiles and stressing distribution networks
(Steinberg et al. 2020; Bawaneh et al. 2024). Cooling degree days (CDD) provide a policy-relevant
metric for quantifying these needs and have become central to modeling temperature—electricity

relationships (Isaac and van Vuuren 2009; Sailor 2001).

The objective of this study is to analyze how climate-induced cooling demand disproportionally
impacts U.S. household electricity consumption across population subgroups and levels of energy
use. Using a causal machine learning framework grounded in the potential outcomes approach, the
study aims to uncover heterogeneous responses to cooling demand, quantify how these effects vary
across the consumption distribution, and identify which household groups are most affected by
rising cooling needs. By focusing on both the average and distributional effects, the analysis

provides evidence relevant for designing equitable and adaptive energy policies.

Several studies including Aufthammer & Aroonruengsawat (2011) and Deschénes & Greenstone
(2011) document the strong links between temperature and residential electricity consumption,
including responses during extreme heat. Yet mean-based approaches can mask important
dispersion in responses across households with different technologies, building stocks, and
resources. Moreover, program evaluations and pricing pilots show wide heterogeneity in demand
responses, underscoring the need to understand who bears the largest marginal burden when
cooling demand rises (Reiss & White 2005; Ito 2014; Knittel & Stolper 2022). These findings
motivate the use of flexible causal inference methods capable of capturing complex and

heterogeneous behavioral responses to climatic variation.

This study adopts a causal machine learning (ML) framework to move beyond descriptive
associations. Unlike unconditional quantile regression, which relies on functional-form
assumptions and influence function projections (Firpo et al. 2009), causal ML is grounded in the

potential outcome framework, enabling estimation of treatment effects that vary across households



and the consumption distribution. Although increasingly applied in other policy contexts (Athey
et al. 2019; Knittel & Stolper 2022), its use in climate—energy analysis remains limited.
Methodologically, causal ML framework flexibly capture nonlinear, high-dimensional interactions
(Wager & Athey 2018; Athey et al. 2019), while orthogonalization and cross-fitting minimize bias
and overfitting, ensuring valid inference under standard causal assumptions (Chernozhukov et al.
2018; Nie & Wager 2021; Kiinzel et al. 2019). These properties are particularly valuable with
survey-based energy data, where the effects of climate exposure are mediated by diverse

demographic and technological factors.

The study uses 2020 RECS microdata for the analysis. Based on geographic variation in cooling
exposure, the treatment is defined as a binary indicator equal to one if a household’s CDD exceeds
the mean CDD of its climate zone, enabling within-zone comparisons. This zone-specific
normalization controls for structural climatic differences and enables meaningful within-zone
comparisons of cooling-related electricity consumption. Balance checks on pre-treatment
covariates are conducted within 75, £100, and £125 CDD bandwidths using standardized mean
differences. Robustness is assessed via two alternative treatment definitions: first, households
above the 75th percentile of CDD within their climate zone, and second, households whose 30-
year average CDD exceeds the zone-specific mean. Estimated CATE, CQTE, and CSQTE effects
are projected via OLS onto household characteristics, linking nonparametric results to observable

traits and showing subgroup patterns for targeted energy policies.

The findings show that higher cooling degree days significantly increase household electricity
consumption by roughly 32-34% on average with disproportionately larger effects among lower-
consuming, minority, and middle-income households. These results highlight widening energy-
use inequalities under climate stress and underscore the importance of targeted efficiency and

adaptation policies that address household-level vulnerabilities.

The remainder of this study is organized as follows. Section 2 presents the literature review,
summarizing prior evidence on causal ML approaches and highlighting the contribution of this
study to the growing causal and distributional literature on climate—energy interactions. Section 3
outlines the methodological framework, including data description, treatment construction, and the

empirical model. Section 4 discusses the empirical results, emphasizing heterogeneity across



household groups and consumption levels. Finally, Section 5 concludes with key policy

implications for energy equity and climate adaptation.

2.0 Literature Review

2.1 Conditional Average Treatment Effects Estimation

The estimation of Conditional Average Treatment Effects (CATE) is central to understanding
treatment effect heterogeneity, particularly in observational and experimental studies. Over the
years, researchers have advanced various methodologies employing statistical and machine
learning techniques to address challenges such as high-dimensional data, confounding variables,
and treatment effect heterogeneity. Hill (2011) introduced Bayesian Additive Regression Trees
(BART), a nonparametric Bayesian method for modeling response surfaces. BART flexibly
estimates heterogeneous treatment effects by focusing on the response surface, outperforming
traditional methods like propensity score matching in nonlinear settings. Its ability to handle high-
dimensional covariates makes it particularly suitable for complex datasets. Similarly, Souto and
Neto (2024) expanded on BART with their K-Fold Causal BART model, which combines
Bayesian regression trees with cross-validation to improve the estimation of both ATE and CATE,

though it exhibited limitations in certain real-world datasets.

Strittmatter (2023) demonstrated the practical utility of causal machine learning (CML) in policy
evaluations, where CML offered nuanced insights into treatment heterogeneity beyond traditional
estimators. Kim et al. (2023) further emphasized the importance of CATE estimation in clustered
data, applying methods such as causal forests and BART to address cross-level interactions. These
methods provided valuable insights into educational policy decisions by accounting for the
interactions between individual and community-level covariates. Kato and Imaizumi (2023)
introduced CATE Lasso, which leverages implicit sparsity in high-dimensional linear models to
achieve robust and consistent estimates, validating its effectiveness in distinguishing treatment-

specific effects through simulation studies.

Hahn et al. (2020) proposed Bayesian causal forests as an advanced method for estimating
heterogeneous treatment effects in the presence of strong confounding. By incorporating
propensity score estimation and separately regularizing treatment heterogeneity, their approach

addressed biases in nonlinear models. Similarly, Gbadegesin and Yameogo (2024) demonstrated



the potential of hybrid methodologies by combining machine learning models like Gradient
Boosting and XGBoost with targeted maximum likelihood estimation. Their work highlights how

updating initial predictions with clever covariates improves treatment effect estimation efficiency.

Wager and Athey (2018) introduced the causal forest algorithm, which extends Breiman’s random
forests to estimate heterogeneous treatment effects. Their method is notable for its ability to
construct asymptotically valid confidence intervals, making it particularly effective in high-
dimensional settings. Expanding on causal forests, Oprescu et al. (2019) proposed orthogonal
random forests, which integrate Neyman-orthogonality with generalized random forests. This
approach reduces sensitivity to nuisance parameter estimation errors and performs robustly in both

discrete and continuous treatment scenarios.

Kiinzel et al. (2019) developed meta-algorithms, including the X-learner, which enhances the
efficiency of CATE estimation, especially when treatment group sizes are imbalanced. The X-
learner integrates base learners like random forests and BART, leveraging structural properties of
the CATE function for flexible and efficient estimation. Extending this line of research, Machluf
et al. (2024) introduced ensemble methods such as the Stacked X-Learner and Consensus-Based
Averaging (CBA). These methods aggregate multiple estimators to improve robustness and
stability in CATE estimation, particularly in scenarios with high uncertainty or varying data-

generating processes, demonstrating superior performance across diverse datasets.

2.2 Double Machine Learning and Orthogonal Statistical Learning

Double machine learning (DML) and orthogonal statistical learning have emerged as robust
methodologies for addressing causal inference challenges, particularly in high-dimensional
settings with complex nuisance parameters. These methods leverage advancements in machine
learning to mitigate issues like bias from regularization and overfitting while enabling efficient
estimation of treatment effects, including heterogeneous effects. Chernozhukov et al. (2018)
introduced the DML framework, which uses Neyman-orthogonal moments and cross-fitting to
achieve consistent and asymptotically normal estimates of CATE. This framework is highly
flexible, accommodating machine learning algorithms like random forests, lasso, ridge regression,

and neural networks for nuisance parameter estimation. The versatility of DML has been



demonstrated in models ranging from partially linear regression to instrumental variables and

treatment effect estimation, underscoring its broad applicability.

Building on Chernozhukov et al. (2018), Bach et al. (2022) developed DoubleML, an open-source
Python library that integrates DML with machine learning models, facilitating its adoption in
empirical research. This tool provides functionalities for valid statistical inference across various
causal models, solidifying DML's position as a cornerstone in modern causal inference. Knaus
(2021) showcased DML's adaptability by applying it to assess the effects of musical practice on
youth development. This study highlighted practical considerations in implementing DML, such
as parameter tuning and covariate balancing, demonstrating its ability to address real-world

complexities while maintaining robust inference.

Orthogonal learning has also made significant contributions to causal inference, particularly
through its capacity to manage nuisance parameter estimation errors. Foster and Syrgkanis (2019)
provided theoretical guarantees for excess risk in models involving nuisance parameters,
demonstrating the robustness of orthogonal learning in high-dimensional and nonparametric
settings. Mackey et al. (2018) and Zadik et al. (2018) extended this framework to orthogonal
machine learning, introducing higher-order orthogonality to enhance robustness in non-linear and
complex causal inference tasks. Athey and Wager (2021) further advanced the field by applying
orthogonal statistical learning to policy optimization. Their methodology integrates doubly robust
estimators with optimization techniques, allowing for the design of treatment policies that balance

fairness, budget constraints, and other considerations.

Extensions of the DML framework to heterogeneous treatment effect estimation have provided
critical insights into optimality in causal inference. Kennedy (2020) proposed a doubly robust
CATE estimator that achieves faster error rates in smooth nonparametric models, advancing the
understanding of statistical limits in heterogeneous treatment effects. Ichimura and Newey (2022)
emphasized the utility of influence functions in semiparametric models for debiasing estimators,
providing robust tools for policy evaluation in the presence of complex nuisance structures. These
advancements have proven transformative for empirical research, as demonstrated by applications

in dose-response relationships (Knaus, 2021) and policy learning (Athey & Wager, 2021).



Despite their strengths, DML and orthogonal learning methods face practical challenges, including
computational complexity and sensitivity to tuning parameters. Kennedy (2020) and Knaus (2021)
highlighted the importance of careful parameter tuning and covariate balancing in high-
dimensional applications. Additionally, Mackey et al. (2018) and Zadik et al. (2018) noted the
scalability limitations of higher-order orthogonal moments in large datasets. These challenges
underscore the need for further methodological refinements to enhance the scalability and

efficiency of these approaches in applied settings.

2.3 Distributional Treatment Effects Estimation

The estimation of distributional treatment effects (DTE) provides a comprehensive framework for
understanding how treatments impact the entire distribution of an outcome, rather than limiting
the analysis to average effects. Chernozhukov et al. (2013) laid the foundation for modeling
counterfactual distributions using regression-based methods, enabling the analysis of full outcome
distributions. Their work introduced techniques to construct confidence sets for functional effects
like quantile functions, facilitating applications in policy analysis such as wage decompositions.
This framework offered distribution regression as a robust alternative to quantile regression,
emphasizing its flexibility. Later, Chernozhukov et al. (2020) extended these methodologies to
nonlinear network and panel models, addressing challenges like unobserved two-way effects and
incidental parameter problems. Their approach, which constructs confidence bands for quantile

functions, has proven effective in analyzing complex datasets, including trade networks.

The integration of machine learning into DTE estimation has significantly advanced the field,
offering new tools for addressing treatment heterogeneity. Zhou and Carlson (2021) proposed
Collaborating Causal Networks (CCN), a flexible framework for estimating full potential outcome
distributions without restrictive assumptions about the data-generating process. CCN excels in
capturing distributional variations, particularly in tail behavior and risk profiles, making it a
valuable tool for nuanced decision-making. Park et al. (2021) introduced the Conditional
Distributional Treatment Effect (CoDiTE), which generalizes the CATE framework to higher-
order moments of treatment effects. Their methodology, based on kernel conditional mean
embeddings and U-statistic regression, has been successful in analyzing real-world and synthetic

datasets, highlighting its utility in understanding tail events and distributional shifts. Kallus and



Oprescu (2023) further contributed by developing a model-agnostic approach for estimating
Conditional DTEs (CDTEs). Their pseudo-outcome-based framework provides robust estimates
of quantile and super-quantile treatment effects, particularly under model misspecification, making

it valuable for fields like financial risk assessment.

Machine learning has also enhanced the precision of DTE estimation in experimental settings.
Byambadalai et al. (2024) developed a regression adjustment method that integrates pre-treatment
covariates into distributional regression frameworks, reducing variance and improving estimator
precision in randomized experiments. Linden and Yarnold (2016) tackled the challenges of
multivalued treatments by employing optimal discriminant analysis, which they argued
outperforms regression-based estimators in capturing heterogeneity across treatment groups.
Similarly, localized debiased machine learning, introduced by Kallus et al. (2019), addresses
complexities in quantile treatment effect estimation by focusing on parameter-dependent
nuisances, achieving robust performance in high-dimensional settings. Belloni et al. (2017) further
emphasized the importance of orthogonal moment conditions for ensuring valid inference in high-

dimensional environments, demonstrating their utility in estimating both local and global QTEs.

Recent innovations have also highlighted the scalability of DTE estimation in applied contexts.
Wu et al. (2023) introduced DNet, a novel architecture capable of estimating distributional
individualized treatment effects. DNet’s strength lies in its ability to model entire outcome
distributions, particularly in heavy-tailed settings, and its successful deployment in applications
like mobile app optimization underscores its robustness and scalability. Finally, Curth et al. (2024)
explored the application of DTEs in clinical settings, focusing on tailoring treatments to individual
patient characteristics. Their review emphasized the challenges of covariate shift and identification
assumptions, advocating for methodological advancements to enhance the applicability of DTE

estimation in diverse contexts.

Hsu et al. (2023) introduced a double/debiased machine learning framework to estimate direct and
indirect quantile treatment effects, achieving robust results even under model misspecifications.
Their method was validated through simulations and applied to assess earnings effects in the
national job corps study. Kallus et al. (2024) proposed localized debiased machine learning to

efficiently estimate local quantile treatment effects while reducing computational complexity,



demonstrating robust performance in high-dimensional settings. Similarly, Chen, Huang, and Tien
(2021) extended debiased machine learning to instrumental variable quantile regression,
effectively handling high-dimensional controls and providing insights into the quantile treatment
effects of 401(k) participation on wealth. These studies underscore the growing precision and

applicability of DTE estimation techniques.

2.4  Application of CATE and DTE in Energy and Climate Research

While the application of ML to CATE and DTE is well-established in fields such as healthcare
and economics, its integration into energy and climate research is still emerging. Currently,
relatively few studies explicitly apply ML methods to estimate CATE and DTE in these fields. For
example, Knittel and Stolper (2021) applied causal forests to assess the heterogeneous effects of
energy conservation nudges, uncovering substantial variations in household electricity reductions
and highlighting the potential for ML to personalize energy interventions. Klosin and Vilgalys
(2022) employed DML to estimate the effects of extreme heat on U.S. corn production, showcasing
the effectiveness of ML methods in capturing complex, non-linear relationships and quantifying
the impacts of extreme weather. In climate-focused applications, Giannarakis et al. (2022)
employed CATE estimation to assess the effects of sustainable agricultural practices on soil
organic carbon, emphasizing the need for localized interventions to enhance carbon sinks. Gadea
and Gonzalo (2023) advanced the analysis of climate heterogeneity by examining the full
temperature distribution, and regional variations in warming patterns that demand tailored

mitigation strategies.

This study applies the robust, model-agnostic framework for CDTE estimation developed by
Kallus and Oprescu (2023), alongside CATE estimation, to address key challenges in energy and
climate research, including model misspecification, high-dimensional covariates, and the need to
capture heterogeneity across the outcome distribution. While CATE estimation identifies average
treatment effect variation across subgroups, CDTE extends this by quantifying how treatment
effects differ at different points of the conditional outcome distribution, providing a richer picture
of heterogeneity. Both approaches leverage recent advances in causal machine learning, including
pseudo-outcome regressions, cross-fitting, orthogonalization, and flexible learners such as causal
forests and double/debiased machine learning, ensuring robustness without relying on restrictive

functional form assumptions.



3.0  Methodology

3.1 Data Sources and Description

This study uses data from the 2020 Residential Energy Consumption Survey (RECS), a nationally
representative dataset collected by the U.S. Energy Information Administration (EIA) that
provides detailed information on household energy use, housing characteristics, and demographics
across the United States. Focusing on the 2020 wave ensures analytical consistency within a recent
and homogeneous context while leveraging its larger sample size. Using a single wave rather than
pooled data avoids challenges common in multi-year analyses such as attrition, respondent

conditioning, and inconsistent follow-up sampling which can bias comparisons across survey years

(Lipps 2021; Lebo & Weber 2015).

The dataset undergoes systematic cleaning prior to analysis. Observations with imputed values for
key variables like electricity use and thermostat settings are excluded using EIA-provided
imputation flags. Continuous variables are trimmed at the 1st and 99th percentiles to reduce outlier
influence and log-transformed to address right-skewed distributions, enabling elasticity-based
interpretations. Categorical variables, including appliance ownership, household type, and
demographic characteristics, are retained in their original form unless invalid or missing. After
cleaning, the final analytical sample includes 13,198 households from 18,496 households.
Descriptive statistics are weighted to ensure national representativeness, with means, proportions,

and percentiles reflecting population-level distributions.

3.2 Descriptive Statistics

Table 1 summarizes the composition of U.S. households in the 2020 RECS sample based on key
categorical characteristics. Geographically, households are concentrated in the Cold & Very Cold
(35%) and Mixed Humid (34%) climate zones, with smaller shares located in the Hot Humid
(18%), Hot/Mixed Dry (10%), and Marine (2%) regions. In terms of cooling systems, the majority
of households (78%) rely on central air conditioning, while 20% use unitary AC systems, and only
2% utilize evaporative coolers. The income composition shows that over a quarter (28%) of
households earn more than $100,000 annually, while 13% fall below the $20,000 threshold. The
sample is predominantly composed of White households (83%), followed by Black (10%), Asian
(4%), and smaller shares of multiracial, Native American, and Pacific Islander households. In

terms of housing structure, 71% of households live in single-family homes, with apartments (24%)
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and mobile homes (6%) comprising the rest. Finally, 82% of households report the presence of

insulation, which plays a significant role in moderating cooling energy demand.

Table 1: Weighted proportions of categorical variables

Unweighted Count Weighted Population = Weighted Proportion

Marine Climate Zone 306 2,076,919 0.02
Cold & Very Cold Climate Zone 5407 31,731,365 0.35
Hot Humid Climate Zone 1780 16,583,898 0.18
Hot and Mixed Dry Climate Zone 985 8,655,676 0.10
Mixed Humid Climate Zone 4720 30,732,803 0.34
Central AC Type 10329 69,848,961 0.78
Unitary AC Type 2519 17,983,154 0.20
Evaporative Coolers 350 1,948,547 0.02
Below 20k 1492 11,879,551 0.13
20k-39k income group 2333 17,340,342 0.19
40k-59k income group 2105 14,757,166 0.16
60k-79k income group 1458 9,611,087 0.11
80k-99k income group 1758 11,239,435 0.13
100k and above income group 4052 24,953,081 0.28
Asian Households 452 3,584,970 0.04
Black Households 1083 8,930,101 0.10
Multiracial Households 276 2,107,728 0.02
Native American Households 92 629,053 0.01
Pacific Islander Households 21 176,589 0.00
White Households 11274 74,352,220 0.83
Apartment Homes 2235 21,158,557 0.24
Mobile Homes 699 5,020,957 0.06

Single Family Homes 10264 63,601,148 0.71
Presence of Insulation 11112 73,646,759 0.82
Not Insulated 2086 16,133,903 0.18

Table 2 presents weighted descriptive statistics for key continuous variables used in the analysis.
On average, U.S. households consumed approximately 2,153 kWh of electricity annually for
cooling, with substantial variation across the sample (SD: 1,702 kWh), and values ranging from
76 kWh to over 10,000 kWh. Climate exposure measures show an average of 1,674 CDD and
3,787 HDD. The typical household cooled about 1,484 square feet, lived in a dwelling with six
rooms, and had an average household size of two people. In terms of long-term climate norms, the

30-year CDD average (CDD30YR) was 1,449, with a right-skewed distribution extending to
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nearly 4,000. Lighting behavior, measured by the number of bulbs on for 14 hours daily, had a

mean of 5 bulbs, with notable variation across households (ranging from 0 to 30).

Table 2: Weighted statistics for continuous variables

Count Mean Std Dev Min 25th Median 75th Max
Percentile Percentile

Household Electricity 13198 2152.83 1701.92 76.32 903.22 1677.49 292320  10124.60
Consumption (kWh)

Cooling degree days 13198 1674.06  1008.05 221.00 954.00 1335.00 2067.00 5082.00
Heating degree days 13198 3786.52  1981.50 99.00 2083.80 4172.74 5356.00 8681.00
Cooled SqFt 13198 1483.98  939.43 140.00 780.00 1300.00 2000.00 4800.00
Total Number of Rooms 13198 6.33 2.25 1.00 5.00 6.00 8.00 15.00
Household Size 13198 243 1.35 1.00 1.00 2.00 3.00 7.00
CDD30YR 13198 144935  872.17 209.00 781.00 1186.00 1898.00 3965.00
Bulbs on for 1-4hrs 13198 5.08 4.90 0.00 2.00 4.00 6.00 30.00

3.3 Outcome Variable of Interest

The primary outcome variable is annual household electricity consumption for space cooling,
measured in kilowatt-hours (kWh). This measure is derived from calibrated RECS estimates,
reflects household-level cooling loads across different system types and climate conditions,
including central air conditioning, window/wall units, and evaporative coolers, but excludes non-
system fans and blowers. In the energy economics literature, measuring household electricity use
in physical units (kWh) is widely regarded as more accurate and behaviorally informative than
relying on expenditure-based measures. Physical consumption captures actual energy use,
independent of price variability, billing structures, and regional subsidies that often distort

expenditure data (Andor et al. 2021; and Wang et al. 2023).

Figure 1 presents the distribution of household electricity consumption (kWh), weighted to reflect
the national population. The distribution is unimodal and approximately normal, with mild right
skewness, indicating that while most households cluster around the center, a smaller proportion
consumes substantially higher amounts of electricity. The median consumption is 7.43, with the
25th and 75th percentiles at 6.81 and 7.98, respectively. These correspond to approximately 1,684
kWh, 907 kWh, and 2,947 kWh, highlighting substantial variation in cooling-related electricity

usage across U.S. households.
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Figure 1: Distribution of U.S. household electricity consumption
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3.4  Descriptive Analysis of Cooling Demand

Cooling Degree Days (CDD) serve as the primary climate metric for assessing household cooling
needs. CDD measures the cumulative annual temperature deviation above a 65 °F threshold,
representing the intensity of cooling requirements across locations. For each household in the 2020
RECS sample, annual CDD values are matched from the nearest National Climate Data Center
station, capturing regional variation in climate exposure. Widely applied in energy and climate
studies (Cartalis et al. 2001; Sailor & Pavlova 2003; Isaac & Van Vuuren 2009; Petri & Caldeira
2015; Emenekwe & Emodi 2022), CDD provides a consistent proxy for quantifying climate-driven

cooling demand.

Figure 3.2 illustrates the distribution of CDD across U.S. households, showing a unimodal, slightly
right-skewed pattern with a median of 7.20 (= 1,341 CDD) and an interquartile range from 6.86
(954 CDD) to 7.63 (2,062 CDD). Panel B displays a similar but narrower spread, from 6.66 (778
CDD) to 7.55 (1,889 CDD). Table 3 reports summary statistics by climate zone: households in Hot
Humid regions record the highest average CDD (3,310), followed by Hot & Mixed Dry (2,254)
and Mixed Humid (1,501), while Cold & Very Cold and Marine zones show substantially lower
averages (896 and 637, respectively). The 30-year averages follow the same pattern with slightly

lower magnitudes, reflecting spatial disparities in cooling demand across U.S. climates.
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Figure 2: Distribution of 2020 CDD and 30yrs average among households
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Table 3: Weighted descriptive statistics of cooling degree days by climate zones

8.0

Count Mean Std Dev Min 25th Median 75th Max
Percentile Percentile
Panel A: 2020 Cooling Degree Days
Marine 306 636.89 411.31 221.00 331.74 477.73 846.21 2168.00
Cold & Very Cold 5407 896.32 225.35 228.00 758.00 892.00 1046.00 2644.00
Hot Humid 1780 3310.29 689.76 1773.00 2744.09 3313.00 3760.83 4896.00
Hot & Mixed Dry 985 2254.37 976.62 553.00 1643.41 2001.73 2666.00 5082.00
Mixed Humid 4720 1500.78 33543 404.00 1265.00 1460.00 1720.00 2748.00
Panel B: 30 Years Average Cooling Degree Days
Marine 306 464.56 216.46 209.00 316.25 399.56 586.67 1741.00
Cold & Very Cold 5407 727.34 223.74 209.00 562.00 722.48 882.00 2276.00
Hot Humid 1780 2858.46 496.88 1591.00 2497.00 2812.00 3214.00 3965.00
Hot & Mixed Dry 985 1752.96 826.53 283.00 1216.05 1545.05 2015.25 3965.00
Mixed Humid 4720 1415.48 373.34 302.00 1128.40 1403.00 1671.00 2715.00

3.5 Control & Moderating Variables

To ensure robust identification of the impact of cooling demand on household electricity

consumption, the model includes a set of control and moderating variables. Continuous controls

are heating degree days (HDD), representing annual cold-weather exposure; cooled square footage

and total number of rooms, reflecting dwelling size and energy demand; household size, capturing

occupancy effects; and the number of light bulbs used for one to four hours daily, serving as a

proxy for lighting intensity. Categorical controls include air-conditioning type (central, unitary, or

evaporative), household income brackets, race (White, Black or African American, American
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Indian or Alaska Native, Asian, Pacific Islander, or Multiracial), housing type (single-family,

apartment, or mobile home), and insulation presence.

In the subsequent analysis, heterogeneity in the effect of cooling demand is examined across key
household characteristics, including income group, air-conditioning type, race, and housing type.
These variables provide the basis for assessing subgroup-specific differences in energy responses
to rising cooling needs and their selection align with established energy demand literature linking
climatic (Sailor & Pavlova 2003; Isaac & Van Vuuren 2009), structural (Bedir et al. 2013;
Kavousian et al. 2013), and socioeconomic factors (Hernandez 2013; Bednar & Reames 2020;

Petri & Caldeira 2015) to household energy use.

Table 5 summarizes household electricity consumption across these covariates. Households in
hotter climates, such as the Hot Humid zone, consume significantly more electricity (3,705 kWh)
than those in Marine or Cold zones. Electricity use also increases with income, from 1,824 kWh
among the lowest earners to 2,426 kWh for households earning over $100k. Single-family homes
and central AC users exhibit higher consumption than apartments or users of unitary AC and
evaporative coolers. Racial disparities are also evident, with Pacific Islander and White households

using more electricity on average than Asian households.
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Table 5: Descriptive statistics of household electricity consumption by projected covariates

Count Mean Std Dev Min 25th Median 75th Max
Percentile Percentile

Panel A: Climate Zone
Marine 306 1028.63 865.99 107.91 411.19 779.77 1337.81 7314.97
Cold & Very Cold 5407 1345.91 965.13 76.32 649.66 1102.12 1790.28 8308.31
Hot Humid 1780 3704.98 2043.78 12491 2116.83 3410.17 5020.31 10124.60
Hot & Mixed Dry 985 2168.34 1727.78 92.65 870.20 1628.69 3054.72 9478.86
Mixed Humid 4720 2220.01 1514.03 113.01 1095.37 1872.65 2987.02 10031.42

Panel B: Income Group
Less—20k 1492 1824.00 1552.35 76.32 721.72 1362.82 2413.57 9511.89
20k—39k 2333 1980.90 1555.66 102.26 824.67 1527.33 2765.87 9615.44
40k-59k 2105 2146.69 1747.09 90.43 868.98 1633.27 2933.02 9890.57
60k—79k 1458 2164.06 1660.75 110.12 908.98 1766.46 2870.83 8661.61
80k—99k 1758 2158.46 1620.37 98.23 977.75 1701.31 2927.32 10031.42
100k+ 4052 2425.62 1842.85 86.63 1075.94 1903.82 3263.88 10124.60

Panel C: Housing Type
Apartment Home 2235 1237.30 987.97 76.32 569.10 963.61 1636.76 8108.06
Mobile Home 699 2344.84 1745.06 102.69 956.02 1904.85 3231.89 9615.44
Single family 10264 2442.24 1777.13 90.43 1118.19 1978.45 3301.39 10124.60
Home

Panel D: Air Conditioner Type
Central AC 10329 2376.71 1757.04 86.63 1064.15 1898.99 3224.27 10124.60
Unitary AC 2519 1373.55 1208.45 76.32 576.46 1008.11 1782.99 9615.44
Evaporative 350 1319.34 1105.18 103.87 560.14 1001.13 1648.92 6482.54
Coolers
Panel E: Household Race

Black 1083 2207.40 1710.43 92.65 959.03 1734.44 3030.21 9816.55
Multiracial 276 2185.36 1544.20 102.69 970.94 1896.68 2933.50 7589.40
Native American 92 1901.65 1567.53 141.10 842.71 1508.40 2392.86 7390.69
Pacific Islander 21 2540.97 1641.74 512.81 963.77 2165.57 3574.48 6793.60
White 11274 2165.38 1705.94 76.32 915.18 1683.78 2942.36 10124.60
Asian 452 1762.34 1657.02 105.42 628.67 1181.84 2340.36 9329.33

3.6  Empirical Model

To capture the heterogeneous impacts of climate change—induced cooling demand on household

electricity consumption, this study employs an econometric strategy grounded in the potential

outcome framework. The approach estimates electricity consumption under treated and untreated

states, Y;(1) and Y;(0), allowing for causal inference conditional on observed covariates while

accounting for variation across households and along the consumption distribution.
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The empirical strategy proceeds in multiple stages. First, the treatment variable (4;) is constructed
based on household-level CDD, capturing exposure to elevated cooling demand. Conditional
Average Treatment Effects (CATE) are then estimated using meta-learners (S-, T-, X-, and DR-
learners), which flexibly model heterogeneous responses. The framework is further extended to
estimate Conditional Distributional Treatment Effects (CDTE)—specifically, Conditional
Quantile Treatment Effects (CQTE) and Conditional Superquantile Treatment Effects (CSQTE)—
to assess how cooling demand influences different points and tails of the electricity consumption
distribution. Finally, each estimated treatment effect is projected onto key household and building
characteristics using OLS to enhance interpretability and identify the subgroups most affected by

rising cooling demand.

3.6.1 Treatment Variable of Interest

To capture variation in climate-driven cooling exposure across regions, this study defines a binary
treatment indicator representing high cooling demand. A household i in climate zone z is
considered treated if its 2020 Cooling Degree Days (CDD; 5¢,0) exceed the mean CDD of its
respective climate zone (CDD, 5050). This zone-specific normalization controls for structural
climatic differences and enables meaningful within-zone comparisons of cooling-related
electricity consumption. Formally, the treatment indicator is defined as:

1, if CDD; 2020 > CDDy 2020

A = { .
0, otherwise

To assess the validity of this quasi-experimental treatment assignment, this study conducts balance
checks using pre-treatment covariates. These covariates reflect key determinants of energy
consumption and include indicators for climate zones, types of air conditioning equipment,
household income ranges, racial identification of the household head, housing unit types,
insulation levels, log-transformed cooled square footage, total number of rooms, household size,
number of light bulbs used for 1-4 hours daily, and heating degree days (HDD). Balance is
assessed by comparing treated and control households—those above and below the zone-specific
mean CDD—within symmetric bandwidths of 75, 100, and +125 CDDs. For each specification,
two-sample t-tests and standardized mean differences (SMDs) are used to evaluate the similarity

of covariates across groups.
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SMDs is used as the balance metric because they are sample-size invariant and directly quantify
covariate imbalance, consistent with best practices in causal inference (Austin 2009; Stuart 2010;
Rosenbaum & Rubin 1985) and the broader tradition of balance diagnostics in observational
designs (Ho et al. 2007; Imbens & Rubin 2015; Cattaneo & Titiunik 2022). Table 6 shows strong
balance across all three bandwidths: the £75 CDD window shows the strongest balance with nearly
all SMDs well below 0.1; the =100 bandwidth performs similarly, with small differences for mid-
income and White indicators that remain under the 0.1 threshold; and the wider +125 window
introduces modest variation, with most covariates balanced except for HDD at 0.13. Overall,
SMDs remain within acceptable limits, demonstrating covariate balance and supporting the

plausibility of exogenous variation around the climate-zone CDD threshold.
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Table 6: Covariate balance around zone-specific CDD threshold using SMD

75 Bandwidth 100 Bandwidth 125 Bandwidth
Variables T-Stat SMD T-Stat SMD T-Stat SMD
Marine Climate Zone 0.441 0.018 -0.239 -0.009 -0.502 -0.016
Hot and Mixed Dry Climate Zone -0.635 -0.026 -1.644%* -0.059 -0.014 0.000
Mixed Humid Climate Zone -1.660* -0.068 -1.272 -0.046 -2.493%* -0.081
Hot Humid Climate Zone -0.824 -0.033 -0.456 -0.016 0.125 0.004
Central AC Type 1.383 0.056 1.639% 0.059 2.769%* 0.089
Evaporative Coolers AC Type 0.487 0.020 0.298 0.011 -0.101 -0.003
20k-39k income range -0.003 0.000 0.229 0.008 -0.375 -0.012
40k-59k income range -0.727 -0.029 -0.265 -0.009 0.058 0.002
60k-79k income range 2.715% 0.109 2.954* 0.105 2.747* 0.088
80k-99k income range 0.373 0.015 0.029 0.001 0.235 0.008
100k and above income range -1.963* -0.079 -2.121%* -0.076 -2.277* -0.073
Asian Households 1.020 0.041 1.980* 0.071 1.666* 0.053
Multiracial Households -0.313 -0.013 -0.387 -0.014 0.172 0.006
Native American Households -0.309 -0.013 -1.228 -0.044 -0.466 -0.015
Pacific Islander Households -1.415 -0.060 -1.415 -0.053 -1.733* -0.057
White Households -2.014* -0.081 -1.717* -0.061 -2.120% -0.068
Mobile Homes -0.330 -0.013 -1.200 -0.043 -1.032 -0.033
Single Family Homes -1.978* -0.080 -2.141* -0.077 -0.688 -0.022
Presence of Insulation -1.027 -0.041 -0.573 -0.021 -0.962 -0.031
Log Cooled SqFt -0.555 -0.022 -0.476 -0.017 0.590 0.019
Number of rooms -0.867 -0.035 -1.081 -0.039 0.149 0.005
Household Size -1.965* -0.079 -2.241* -0.080 -1.277 -0.041
Bulbs on for 1-4hrs 0.482 0.019 0.148 0.005 0.497 0.016
Log HDD -0.631 -0.026 -1.503 -0.054 -4.037* -0.130

Standard errors in parentheses. Significance: *** p < 0.01, ** p <0.05, * p <0.10.

For robustness, two alternative classification strategies are employed to ensure that the results are
not driven by a single threshold definition or short-term climatic variation. First, households are

reclassified as treated if their 2020 Cooling Degree Days (CDD; 54,0) exceed the 75th percentile
of CDD within their respective climate zone (C DDZ('7250)20). This alternative specification identifies

households experiencing particularly intense cooling needs relative to local climatic norms.

Formally, this is defined as:
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AT {1, if CDDiz020 > cDD{
0, otherwise

Second, the treatment definition is repeated using long-run climate exposure based on 30-year

average Cooling Degree Days (CDD;3¢y,). This long-term specification captures persistent

climatic exposure and validates the stability of the results under extended temperature trends rather

than annual anomalies. In this case, a household is treated if its 30-year average CDD exceeds the

mean 30-year CDD of its climate zone (C DD, 30yr)-

AGO) — {L if CDDi,30yr > CDDZ,BOyr,
1 0, otherwise

The treatment indicator A;, thus captures whether household 1 in climate zone z experiences high
cooling demand, normalized to local climatic conditions. This variable form the basis for the causal
analysis that follows. In subsequent sections, the empirical models quantify how exposure to high
cooling demand causally affects household electricity consumption. Section 3.7 develops this
framework formally by estimating both conditional mean and distributional treatment effects using

causal machine learning methods.

3.6.2 Conditional average treatment effects specification

The potential outcomes framework defines electricity consumption for each household under two
scenarios: Y;(1) represents the electricity use if household i experiences high cooling energy
demand (treated), while Y;(0) represents the electricity use if household i does not experience high
cooling energy demand (control). The CATE (7) is defined as the expected difference in electricity
use under these two scenarios, conditional on household characteristics (X;). Formally, CATE is

expressed as:
CATE(X;) = E[v;(D) - Y:(O]X;]  3.1)

where, X; includes household-level covariates such as climate zone, air conditioning type,
household income, cooled sqft, household race, etc. These covariates help to capture the

heterogeneity in treatment effects across different subpopulations.

The observed outcome is defined as:
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Y = AY,(1D) + (1 - A4)Y;(0) (3.2)

Under the assumptions of unconfoundedness (Y (a) L A|X) and overlap (0 < P(A =1|X) < 1),

treatment effects can be estimated using observed data.

To estimate CATE, this study implements four meta-learners: the S-learner, T-learner, X-learner,
and DR-learner, following the methodology outlined in Kiinzel et al. (2019). The S-learner treats
the treatment indicator, 4;, as a standard feature in the regression model, estimating a single
response function:
T(X;, A;) = E[Y;|X;, A;] (3.3)
using a supervised learning model trained on the entire dataset. The estimated function,

7(X;, 4;), is then used to compute the CATE as:

This approach is computationally efficient, as it fits only one model, but it assumes the same

functional form for both treated and control groups, which may be restrictive in some cases.

The T-learner takes a two-step approach, estimating separate models for the treated and control

groups. First, the control response function is estimated as:
To(X;) = E[Y;(0)1X;] (3.5)

using a supervised learning model trained only on the control group (4; = 0). Similarly,

the treatment response function is estimated as:
7, (X;) = E[Y;(DI[X;] (3.6)

using another supervised learning model trained only on the treated group (4; = 1). The

CATE estimate from the T-learner is then:

Tr(Xy) = (X)) — To(X) (3.7)
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This method allows for different functional forms in the treated and control groups, making it more
flexible than the S-learner. However, when the sample sizes for one group are significantly smaller,

model estimates can suffer from high variance.

The X-learner extends the T-learner by leveraging imputed treatment effects to improve
estimation, especially when the treatment and control groups are highly unbalanced. The X-learner
follows three main steps, first estimate the response functions using equation 3.3. For the treated
group (4; = 1) and control group (4; = 0), impute the counterfactual control and treated outcome,

respectively:
D; = v;(1) — 55(Xy) (3.8)
Do = 71(X) — ¥,(0) (3.9)
CATE is estimated using a weighted average:

LX) = gXDH X)) + (1 - gX))a X)) (3.10)

where g(X;) is the weighting function, typically chosen as:

Ny

gX) = I

The DR Learner combines propensity score modeling and outcome regression to reduce bias in
CATE estimation. It is particularly useful in observational settings where treatment assignment

may depend on observed covariates. It first estimates the propensity score:
e(X;) = P(4; = 1|1X;)

using a classification model. Then, separate outcome models for treated and control groups

are fitted:
To(Xy) = E[Y;(0)]X;], 71 (X;) = E[Y;(DIX;]

Using these estimates, the pseudo-outcome is obtained as:
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~ (Y =T (X) (X)) - Y

The pseudo-outcome D, is then used as the response variable in a regression model to estimate

CATE.
or(X) = E[D, | Xi]

3.6.3 Conditional distributional treatment effects specification

Extending the same household-level treatment indicator A; defined in Section 3.4, the analysis
adopts a distributional perspective to capture how high cooling demand affects the entire
conditional distribution of electricity consumption. Building on Kallus and Oprescu (2023), the
CDTE framework extends beyond mean treatment effects to quantify differences in specific
statistics (e.g., quantiles, super-quantiles) of the conditional distributions of electricity use under

treatment (Fy(1)| x) and control (Fy(o)l X) conditions. The CDTE is formally expressed as:
CDTE(X) = ®*(Fyayx) — X' (Fyeoyx)  (3.12)
where X*(F) represents a statistic derived from a moment condition:
Elo(Y,X,h)] =0

This study employs two key CDTE measures to assess the impact of cooling energy demand on
electricity use. The first measure is the Conditional Quantile Treatment Effect (CQTE), which

captures the treatment effect at specific quantiles of the electricity use distribution. It is defined as:

CQTE(X;1) = Q(Fy(1)|xi T) - Q(Fy(0)|x;r) (3.13)

where q(F; ) represents the quantile at level 7. This measure provides insights into how
the treatment affects households at different points in the outcome distribution, such as

those at the median or in the upper or lower tails.
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The second measure is the Conditional Super-Quantile Treatment Effect (CSQTE), which extends
the analysis by capturing the average outcomes beyond a specified quantile, focusing on tail risks.
Unlike CQTEs, which focus on specific thresholds, CSQTEs provide a broader view of the risk

profile by considering the average effects in the extreme tail of the distribution. It is expressed as:

CSQTE(X; 1) = u(Fyayx; 7) — u(Freoyxir)  (3:14)
where u(F; t) represents the expected value of outcomes exceeding the T-quantile.

To estimate CDTEs, the study adopts the pseudo-outcome regression approach introduced by
Kallus and Oprescu (2023). This method corrects for potential bias in naive plug-in estimators and

ensures robust CDTE estimation. The pseudo-outcome for CDTE learning is defined as:

A—e(X)
e(X)(l—e(X))

Y(Z;e,8,h) = R (X) — Ro(X) — o(Y, 8, (X), by (X))  (3.15)

where e(X) = P(A = 1|X), is the propensity score; 8,(X) and h,(X) are nuisance
functions estimated separately for treated (A = 1) and control (A = 0) groups; o(Y, X, h)

is the moment condition linking observed outcomes and the estimated statistics.
The pseudo-outcome satisfies equation 17, ensuring consistency when regressed on X.

E[W(Z; e, & h)|X] = CDTE(X) (3.16)

For CQTEs, the conditional quantile function is estimated by solving:
Elo(Y, %,(X))|X,A=a]=0

For CSQTEs, the super-quantile is estimated in two steps. First, the conditional quantile g, (X; T)
is estimated for each treatment group. Then, the expected value of outcomes exceeding the quantile
is calculated. This process can be implemented by splitting the training data, estimating the

quantile on one subset, and computing tail averages on the other.

He(X;7) = E[(L—0)7YI[Y 2 q,(X; D] | X, A = a] (3.17)
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For CQTEs, the reciprocal of the density at the conditional quantile is required:
1
fy|x,A=a(Qa «X; T))

hy(X) = (3.18)

where fy|x a=q 18 the density of Y given X and A = a.

3.6.4 Linear projections of CATE, CQTE, and CSQTE estimates

After computing CATE, CQTE, and CSQTE estimates, this study examines treatment effect
heterogeneity by projecting the estimated values from each estimator onto household and regional
covariates. The estimated coefficients f; capture the heterogeneous treatment effects associated
with each covariate. The projection is performed separately for each group to identify the
characteristics most strongly associated with variation in treatment effects across the different
estimators. This separate-group projection strategy is adopted to minimize multicollinearity
between categorical variables and to enhance interpretability by isolating the contribution of each

group to observed heterogeneity. The empirical projection is defined as:
P
B=Fo+ ) BiXy+e (3.19)
j=1

where 7, denote a fitted, unit-specific treatment-effect estimate from any of the three
estimators (CATE, CQTE at a fixed q, or CSQTE at a fixed q), X;; are indicator variables
drawn from one categorical group at a time (household air-conditioning types, race, income

group, or household building type), and &; is the error term.

Equation (19) serves as the sample analogue of the population best linear projection established in

the CDTE framework:

B* = argmin || CDTE — ¢p(X)TB || (3.20)
BeRp
where 7(X) represents the true conditional effect (CATE, CQTE,, or CSQTE,) and ¢ (X)
denotes the projected covariates. Under regularity and cross-fitting conditions, the

coefficient vector § converges to f* and satisfies:
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Vn(B -8 SN, (3.21)

where X is the asymptotic covariance matrix of the regression of the pseudo-outcome on
¢(X). HC3-robust standard errors are reported in empirical applications. Since the
dependent variable in the original model is in logarithmic form, coefficient magnitudes can
be interpreted as semi-elasticities, and percentage effects can be obtained via

(exp(t) — 1)100 if desired.

3.6.5 Estimation approach

The estimation of CDTEs is carried out using the CDTE learner developed by Kallus and Oprescu
(2023), which employs cross-fitting to ensure independence between nuisance function estimation
and pseudo-outcome construction. First, the data is divided into K folds. For each fold k, nuisance
functions including the propensity score, e(X), conditional quantiles X,(X), and density estimates
h,(X) are estimated using data from all folds except the k-th fold. This approach ensures that the
estimation of nuisance functions is performed independently of the samples used for final pseudo-
outcome calculations, maintaining an orthogonal structure to the treatment effect estimation. These
estimates are then used to construct a pseudo-outcome for each observation. After computing the
pseudo-outcomes across all folds, the final step involves estimating the conditional expectation of
the pseudo-outcomes given the covariates. This step aggregates the information in the pseudo-
outcomes to estimate the CDTE, which captures how the treatment effect varies across different

levels of the covariates.

For the estimation of CQTE, the process involves constructing models for quantile treatment
effects at specific quantiles, utilizing a combination of Random Forest Quantile Regressors,
conditional density models, and a linear regression learner for final estimation. The Random Forest
Quantile Regressor is employed to estimate conditional quantiles of the outcome distribution given
covariates (X) and treatment (A), capturing the treatment effect at the 25th and 75th percentiles of
the outcome distribution (Y). Additionally, a conditional density model, represented by a Random
Forest Regressor, is used to approximate the conditional density function of the covariates, and a
kernel-based function is included to model fine-grained dependencies. These components feed into

the final CQTE estimation model, represented by a linear regression with robust covariance
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estimation. The pseudo-outcomes are computed using these models and then aggregated to

estimate the CQTE.

For the estimation of CSQTE, two distinct models were utilized, the Random Forest Quantile
Regressor and the Kernel Superquantile Regressor. The Random Forest Quantile Regressor
estimates conditional quantiles of the outcome distribution given covariates (X), capturing
treatment effects at specific percentiles of the outcome distribution. In contrast, the Kernel
Superquantile Regressor extends this analysis to estimate conditional super quantiles, reflecting
expected outcome values in the tail beyond the specified quantile threshold. This distinction is
critical for assessing tail behavior, such as high risks or rewards, and is key to understanding

distributional effects.

For CATE estimation, this study employs multiple meta-learners, including the S-learner, T-
learner, X-learner, and DR Learner, leveraging Gradient Boosting Regressors and Random Forest
Classifiers to estimate heterogeneous treatment effects. The T-learner estimates separate outcome
models for the treated and control groups, capturing differential responses by applying Gradient
Boosting Regression to both groups before computing the treatment effect as the difference in
predicted outcomes. The S-learner incorporates the treatment indicator as a feature in a single
Gradient Boosting Regressor, estimating potential outcomes in a unified model. The X-learner
extends the T-learner by imputing treatment effects for each group and refining estimates with a
second-stage model, incorporating a Random Forest Classifier for propensity score estimation.
Finally, the DR Learner combines outcome modeling with propensity score weighting, where a
Gradient Boosting Regressor is used for both the outcome and pseudo-treatment models, while a
Random Forest Classifier estimates the propensity score, ensuring robustness against
misspecification in either component. These approaches effectively capture non-linear
relationships and high-dimensional interactions among covariates, enhancing the flexibility and

accuracy of CATE estimation.

The final stage of the estimation process involved projecting the estimated effects onto selected
covariates using OLS. This step provides interpretable coefficients for CATE, CQTE, and CSQTE
by regressing the estimated effects onto a subset of key categorical variables. Specifically, the

projection included variables such as household air conditioning type (e.g., central air
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conditioning, unitary air conditioning, evaporative coolers), household race (e.g., Asian, Black,
Multiracial, Native American, Pacific Islander, White), income group (e.g., below $20,000;
$20,000-$39,000; $40,000-$59,000; $60,000-$79,000; $80,000-$99,000; and $100,000 or
more), and household building type (e.g., mobile homes, single-family homes, apartment homes).
All estimation procedures in this study are implemented in Python, with CATE learners following
the modules of Kiinzel et al. (2019) and CDTE estimations (CQTE and CSQTE) based on the
modules developed by Kallus and Oprescu (2023).

4.0 Empirical Findings

4.1 Electricity consumption response to cooling demand

Figure 3 presents the treatment effect estimates for each estimator across the full sample, including
four CATE learners (T, S, X, and DR Learners), and the CQTE and CSQTE estimates at the 25th
and 75th percentiles. For the CATE estimates, the median values are approximately 0.28—0.29
across all learners. This implies that households experiencing higher-than-average cooling demand
consume approximately 32.2% to 33.6% more electricity compared to their counterparts within
the same climate zone. The CQTE estimates show heterogeneous effect across the outcome
distribution. At the 25th percentile, the median CQTE is 0.20, suggesting a 22.1% increase in
consumption among lower-consuming households. At the 75th percentile, the effect is slightly
lower, with a median of 0.17, implying an 18.5% increase. The pattern remains consistent for the
CSQTE (tail expectation) estimates but shows a slightly flatter gradient. The median CSQTE is
0.21 at the 25th percentile and 0.14 at the 75th percentile, implying electricity consumption
increases of approximately 23.4% and 15.0%, respectively. These distributional estimates

underscore how cooling demand disproportionately burdens more vulnerable households.
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Figure 3: Distribution of estimated effects under increased cooling demand
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4.2  Heterogeneous effects by socioeconomic and housing characteristics

Table 6 presents results from an OLS projection of CATE, CQTE and CSQTE on air conditioning
system types, with unitary AC types serving as the reference group. Based on the CATE models,
total effects for central AC users is about 0.32 which translates to approximately 37.7% higher
electricity consumption relative to unitary AC households of about 32%. At the 25th percentile,
the CQTE estimate for central AC users is 0.337, corresponding to a 40.1% increase, while at the
75th percentile the effect drops to 34.3%. The CSQTE estimates show a similar pattern:
households with central AC experience a 31.6% increase at the 25th percentile and 19.6% at the
75th percentile. In comparison, households using evaporative coolers face even greater increases
under CATE models, with total effects ranging from approximately 47.6% to 53.6% higher
electricity consumption compared to unitary AC users. While the CQTE effects for evaporative
coolers are lower (25.6% and 30.6 at 25th and 75th percentile, respectively), the CSQTE estimates
are substantial: households see a 25.9% increase at the 25th percentile and a 37.7% increase at the

75th percentile.

The result shows a nuanced pattern emerges across models: in the CATE projections, households
using evaporative coolers consistently show the highest average increase in electricity
consumption, followed by those with central AC and unitary AC systems. In contrast, the CQTE

projection indicate that central AC households exhibit stronger responsiveness to cooling demand
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than evaporative cooler households at both lower and upper percentiles. However, this pattern
reverses in the CSQTE, where households with evaporative coolers face a steeper increase in

electricity use at higher levels of consumption compared to those with central AC systems.

Table 6: OLS projection of CATE, CQTE and CSQTE on air condition type

CATE CATE CATE CATE CQTE CQTE CSQTE CSQTE
S (T X (DR (25) (75) (25) (75)
Learner) Learner) Learner) Learner)

Central AC ~ 0.036***  0.041*%*  0.042%**  (0.044***  0.048***  -0.087*** 0.113%**  -0.067***

Type (0.005)  (0.006)  (0.005)  (0.006) (0.011) (0.012) (0.003) (0.003)
Evaporative 0.106%** 0.126%** 0.121%** (0.154*%** _0.061**  -0.115%*  0.068***  (0.074%**
coolers (0.012)  (0.015)  (0.014)  (0.019) (0.040) (0.049) (0.008) (0.009)

Constant  0.283%%% (279%%* (278%k% (275%%  (289%%*  (382%*% () [62FF* (. 246**
(0.004)  (0.005)  (0.005)  (0.006)  (0.010)  (0.010)  (0.003)  (0.003)

R? 0.009 0.008 0.010 0.011 0.002 0.003 0.053 0.057

N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p <0.10.

Relative to households earning below $20,000 which experience approximately a 35% increase in
electricity consumption under elevated cooling demand, the OLS projections show (Table 7) a
non-monotonic pattern of heterogeneity across income groups. For the CATE outcome, the total
effect for households earning $20,000-$39,000 is approximately 41%, 39% for those earning
$40,000-$59,000, and a peak of 43% for the $60,000-$79,000 group. In contrast, the effect
declines to around 27% for the $80,000—-$99,000 group, and returns to 37% for those earning
$100,000 and above. This suggests that while all income groups experience substantial increases
in consumption under high cooling demand, the mid-income households, particularly those

between $60,000 and $79,000, exhibit the highest responsiveness.

Additional result from the CQTE outcome reinforce this pattern. At the 25th percentile of the
consumption distribution, households earning $40,000-$59,000 experience the largest increase,
approximately 67%, compared to 38% for the lowest income group. Meanwhile, at the 75th
percentile, the $60,000-$99,000 income brackets show the highest increases, each around 55%,
while the lowest and highest income groups experience lower impacts—32% for $20,000-$39,000
and 29% for $100,000 and above. CSQTE outcome, which capture tail-averaged effects, are
relatively flatter across groups. In the lower tail, effects range between 23%-31%, while in the
upper tail, they cluster between 20%—-24%. These results indicate that while the burden of

increased cooling demand is broadly shared, middle-income households bear disproportionately
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higher effects in terms of average electricity consumption. However, at the lower and upper ends
of the consumption distribution, the effects appear more diffuse, with different income segments

exhibiting higher responsiveness depending on the percentile or tail considered.

Table 7: OLS projection of CATE, CQTE and CSQTE on household income

CATE(S CATE(T CATEX CATE (DR CQTE CQTE CSQTE CSQTE
Learner) Learner) Learner) Learner) 25) (75) (25) (75)
20k-39k 0.043***  0.040%*** 0.040%** 0.046%** 0.195%***  (0.100%** 0.060%** 0.013**
income range  (0.006) (0.007) (0.007) (0.007) (0.019) (0.021) (0.006) (0.005)
40k-59k 0.027***  0.023*** 0.023%** 0.021%** 0.385%***  (.176%** 0.036%** 0.036%**
income range  (0.007) (0.007) (0.007) (0.008) (0.019) (0.021) (0.007) (0.005)
60k-79k 0.057***  0.051*** 0.050%** 0.051*** 0.206%*** (. 257%** 0.069%** 0.019%**
income range  (0.007) (0.008) (0.008) (0.009) (0.021) (0.023) (0.007) (0.005)
80k-99k - -0.073***  0.074***  -0.069*** 0.187%**  (0.261*** 0.040%** 0.002
income range  0.066***  (0.008) (0.007) (0.008) (0.019) (0.021) (0.007) (0.005)
(0.007)
100k and 0.011 0.003 0.001 0.011 0.181***  (.072%** 0.061*** 0.011***
above income  (0.006) (0.006) (0.006) (0.007) (0.017) (0.018) (0.006) (0.004)
range
Constant 0.301***  0.307*** 0.308%** 0.303%** 0.126***  (.180*** 0.204*** 0.182%**
(0.005) (0.005) (0.005) (0.006) (0.014) (0.016) (0.005) (0.004)
R? 0.029 0.024 0.027 0.022 0.031 0.019 0.011 0.006
N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p <0.10.

When projecting estimated effects on household race (Table 8), using Black households as the
reference group, a clear pattern emerges in how cooling demand impacts electricity consumption.
In CATE projection, Asian households have total effects that are nearly identical to Black
households—roughly 39-41% increases, with differences statistically insignificant. In contrast,
White households consistently show lower responsiveness, around 36%. For the CQTE regression,
at the 25th percentile, Asian households show a 65% increase in electricity consumption under
high cooling demand, nearly double the 34% increase for White households. At the 75th percentile,
Asians still exhibit higher responsiveness (38%), though both Asians and Whites remain below
the Black baseline (33%). The tail-expectation regression models reinforce these disparities: for
the lower tail, Asians have a 38% response versus Whites at 28%, and in the upper tail, Asians

remain higher at 25%, relative to 22% for Whites.

Compared to Black households, Multiracial households do not show statistically significant
differences in CATE projection but exhibit a significant increase in household electricity

consumption due to cooling demand in the CSQTE projection—approximately 41.6% at the 25th
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percentile. Native American households experience significantly higher increases in electricity use
under CATE projection (up to 57.8% based on the S Learner), and despite showing notably lower
effects in the CQTE projections, they display substantial increases in consumption in the CSQTE
estimates—about 43.9% and 30.7% at the 25th and 75th percentiles, respectively. Pacific Islander
households exhibit the largest increases in electricity consumption due to cooling demand across
most models, with estimates as high as 70.1% (X Learner) and CSQTE effects of 58.7% at the
25th percentile, indicating a strong sensitivity to cooling needs relative to Black households. These
findings consistently indicate that while Black households face a substantial burden from increased
cooling needs, other minority groups—especially Native American and Pacific Islander
households—tend to bear even greater increases in electricity consumption, particularly in the tails

of the distribution.

Table 8: OLS projection result of CATE, CQTE and CSQTE on household race

CATE(S CATE(T CATEX CATE CQTE CQTE CSQTE CSQTE
Learner) Learner) Learner) (DR (25) 75) (25) (75)
Learner)
Asian 0.009 0.010 -0.007 -0.007 0.092%** 0.03 5% 0.062%** 0.05 1+
Households  (0.020) (0.024) (0.022) (0.025) (0.040) (0.043) (0.015) (0.009)
Multiracial ~ 0.027 0.005 0.010 -0.008 0.053 0.192%#* 0.09 1 *** 0.04 8%+
Households ~ (0.021) (0.025) (0.024) (0.027) (0.049) (0.056) (0.015) (0.010)
Native 0.122%# 0.079 0.089** 0.044 -0.497%**  .0.886%**  (.107*** 0.094*
American (0.033) (0.049) (0.044) (0.063) (0.080) (0.085) (0.022) (0.018)
Households
Pacific 0.136** 0.180%** 0.104** -0.004 0.155%** 0.165* 0.205%** 0.062
Islander (0.099) (0.120) (0.122) (0.150) (0.202) (0.235) (0.067) (0.043)
Households
White -0.026%**  -0.045%**  -0,044%** -0.041***  -0.117***  0.006 -0.012 0.021%***
Households  (0.008) (0.009) (0.008) (0.009) (0.017) (0.019) (0.007) (0.004)
Constant 0.334%** 0.351%%* 0.351%** 0.349%** 0.407%%* 0.293%** 0.257%%* 0.174%**
(0.007) (0.009) (0.008) (0.009) (0.016) (0.018) (0.006) (0.004)
R? 0.009 0.012 0.011 0.004 0.063 0.032 0.015 0.006
N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p <0.10.

Table 9 show that, compared to apartment homes, households in Mobile Homes experience
approximately 43.6% to 46.1% higher electricity consumption due to increased cooling demand,
based on the CATE projections. Households in Single Family Homes also exhibit elevated
consumption, though to a slightly lesser extent (38.5%) but still higher than apartment households.
In the CQTE regression, Single Family Homes show around 44.7% higher consumption at the 25th

percentile and 42.9% at the 75th percentile, indicating strong responsiveness to cooling demand
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across the distribution. By contrast, Mobile Homes display a slight increase of roughly 19.9% at
the 25th percentile and 17.4% at the 75th percentile, though these effects are not statistically
significant. For the CSQTE projections, Single Family Homes show about a 31.3% increase in
electricity use at the lower tail and 22.1% at the upper tail, while Mobile Homes reflect

approximately 22% at the lower tail and no significant difference at the upper tail.

These results indicate that while the burden of increased cooling demand is broadly shared across
housing types, households in single-family homes bear disproportionately higher effects in terms
of average electricity consumption compared to apartment and mobile homes. However, at the
lower and upper percentile of the consumption distribution, the effects appear more diffuse, with
single-family households showing stronger responsiveness overall, while mobile-home
households exhibit marginal or statistically insignificant effects depending on the percentile or tail

considered.

Table 9: OLS projection of CATE, CQTE and CSQTE on building types

CATE(S CATE(T CATEX CATE CQTE CQTE CSQTE CSQTE
Learner) Learner) Learner) (DR (25) (75) (25) (75)
Learner)
Mobile 0.121%%*  (0.141*** 0.136%** 0.131%** 0.023 0.009 0.018** -0.001
Homes (0.009) (0.011) (0.010) (0.012) (0.025) (0.028) (0.008) (0.007)
Single Family = 0.085%***  (.091*** 0.083 % 0.084* 0.2 [*** 0.205% 0.093*** 0.012%**
Homes (0.006) (0.007) (0.006) (0.007) (0.014) (0.015) (0.005) (0.003)
Constant 0.241%**  0.236%*** 0.243%** 0.241%** 0.159%** 0.152%** 0.179%*** 0.187%**
(0.006) (0.006) (0.006) (0.007) (0.013) (0.013) (0.005) (0.003)
R? 0.026 0.025 0.024 0.020 0.023 0.018 0.037 0.001
N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p <0.10.

4.3 Robustness analysis using alternative cooling degree day thresholds

Figures 4 and 5 provide robustness checks of Figure 3.3 findings. Figure 3.4 redefines treatment
as exposure to extreme heat, where 2020 CDD exceeds the 75th percentile within each climate
zone. Under this specification, CATE estimates across learners range from 0.13 to 0.20, implying
consumption increases of 13.9% to 22.1% for those facing unusually high cooling needs. CQTE
medians remain elevated, at 0.19 (= 20.9%) for the 25th percentile and 0.16 (= 17.4%) for the 75th,
with CSQTE estimates reinforcing this pattern at 22.1% and 17.4%, respectively. These results
confirm that even households with moderate or low baseline electricity use are significantly

impacted by intense heat exposure.
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Figure 4: Robustness analysis — treatment effects under extreme cooling demand
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Figure 5 tests the long-term climatic robustness of the results by redefining treatment using 30-
year average CDD. Households are considered treated if their long-run average CDD exceeds the
mean of their climate zone. CATE medians remain positive and stable (0.15-0.17), implying
16.2% to 18.5% increases in electricity consumption among long-term heat-exposed households.
CQTE results show even stronger effects among lower-consuming households, with a 25th
percentile median of 0.23 (= 25.9% increase) compared to 0.21 (= 23.4%) at the 75th. CSQTE
estimates also reinforce this distributional pattern, with the highest median effect of 0.26 (=29.8%)
occurring in the lower tail. Overall, this robustness check supports the main findings and

demonstrates their stability under alternative treatment definitions.
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Figure 5: Robustness analysis — treatment effects based on 30-year average CDD
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Under the alternative treatment definition based on the 75th percentile of CDD within each climate
zone, the OLS projections of CATE, CQTE, and CSQTE (Table 10) reinforce the main findings,
preserving the core patterns while amplifying certain distributional effects. In Panel A, central AC
households continue to exhibit higher electricity consumption than the unitary AC baseline, with
a notably stronger lower-tail response (approximately 28% at the 25th percentile), whereas
evaporative cooler households remain distinctly upper-tail intensive, with increases of about 40%
at the 75th percentile. In Panel B, the hump-shaped income gradient is maintained, with households
earning $60k—$79k again displaying the largest responses, including CQTE effects at the 25th

percentile exceeding 60%, while higher-income groups show reduced upper-tail effects.

Panel C confirms pronounced racial heterogeneity: Black, Asian, Native American, and Pacific
Islander households register particularly large tail responses, with upper-percentile effects often
exceeding 45%, whereas White households exhibit more moderate and consistent increases. This
reinforces the disproportionate electricity consumption burden on minority groups. In Panel D,
housing type asymmetries persist, with mobile homes showing upper-tail increase (above 25% at
the 75th percentile) and single-family homes concentrating higher consumption among lower-use

households (31% at the 25th percentile) while recording a lower effect in the upper percentiles.
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Table 10: Heterogeneous effects under 2020 CDD 75th percentile treatment threshold

CATE (S CATE (T CATE (X CATE (DR CQTE (25) CQTE (75) CSQTE CSQTE
Learner) Learner) Learner) Learner) (25) (75)
Panel A: Air Conditioner Type
Central AC -0.020%** -0.014 0.052%** 0.041%** -0.042%*** -0.120%** 0.086*** -0.089***
Type (0.005) (0.010) (0.007) (0.009) (0.010) (0.008) (0.004) (0.004)
Evaporative 0.047%** 0.059** 0.048%* 0.053%*x* -0.138*#* 0.024 0.068*** 0.037%**
coolers (0.014) (0.026) (0.019) (0.023) (0.026) (0.022) (0.010) (0.010)
Constant 0.205%** 0.216*** 0.198*** 0.159%** 0.292%** 0.314%** 0.158*** 0.289***
(0.005) (0.010) (0.007) (0.008) (0.009) (0.007) (0.003) (0.004)
R? 0.003 0.002 0.005 0.002 0.002 0.017 0.023 0.074
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel B: Income Group
$20k-$39k 0.040%** 0.073*** 0.060*** 0.064*** 0.116%*** 0.072%** 0.053*** 0.020%**
(0.007) (0.013) (0.010) (0.012) (0.015) (0.012) (0.007) (0.005)
$40k-$59k 0.032%** 0.006 0.012 0.027** 0.105%** 0.100%** 0.030%** 0.017***
(0.007) (0.013) (0.010) (0.012) (0.015) (0.012) (0.007) (0.005)
$60k—$79k 0.070%** 0.092%** 0.088*** 0.081*** 0.321*** 0.295%** 0.087*** 0.040%**
(0.008) (0.015) (0.011) (0.013) (0.017) (0.013) (0.008) (0.005)
$80k—$99k 0.040%** -0.002 0.006 0.010 0.020 0.002 0.029%** 0.005
(0.007) (0.014) (0.010) (0.012) (0.016) (0.013) (0.008) (0.005)
$100k+ 0.040*** 0.034*** 0.030*** 0.037*** 0.062%*** 0.057*** 0.027%** -0.006
(0.006) (0.012) (0.009) (0.011) (0.014) (0.011) (0.007) (0.004)
Constant 0.153%** 0.173%** 0.208*** 0.155%** 0.161%*** 0.142%** 0.197%** 0.210%**
(0.005) (0.010) (0.008) (0.009) (0.012) (0.009) (0.005) (0.004)
R? 0.006 0.007 0.009 0.005 0.034 0.046 0.011 0.010
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel C: Household Race
Asian 0.056%** 0.153%*%* 0.086*** 0.093%** 0.373%%* 0.279%** 0.017 0.060%**
(0.016) (0.029) (0.022) (0.025) (0.035) (0.028) (0.017) (0.009)
Multiracial 0.082%** 0.118*** 0.124*** 0.112%** 0.002 -0.159*** 0.082%** 0.052%**
(0.018) (0.031) (0.024) (0.028) (0.035) (0.030) (0.019) (0.010)
Native 0.083%** 0.166*** 0.154%** 0.069 0.001 0.216%** 0.119%** 0.098***
American (0.027) (0.048) (0.038) (0.038) (0.060) (0.052) (0.027) (0.016)
Pacific 0.151 0.117 0.160 0.223 0.113%** 0.235%** 0.250%*** 0.072*
Islander (0.085) (0.113) (0.100) (0.129) (0.142) (0.127) (0.091) (0.039)
White 0.037%** 0.044*** 0.041*** 0.037%** 0.049%** 0.073%** 0.038*** 0.042%**
(0.006) (0.013) (0.009) (0.011) (0.013) (0.011) (0.007) (0.004)
Constant 0.155%** 0.160*** 0.198*** 0.154*** 0.197*** 0.150%** 0.191*** 0.180***
(0.006) (0.012) (0.008) (0.010) (0.013) (0.011) (0.007) (0.003)
R? 0.004 0.005 0.005 0.003 0.046 0.029 0.006 0.009
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel D: Housing Type
Mobile Home  0.055%*%* 0.195%** 0.150%** 0.111%** -0.145%** 0.032* 0.075%** 0.024***
(0.008) (0.017) (0.012) (0.015) (0.020) (0.017) (0.009) (0.007)
Single family ~ 0.090*** 0.107*** 0.086%*** 0.090%** 0.085%** -0.009 0.079%** 0.000
Home (0.005) (0.010) (0.008) (0.009) (0.012) (0.010) (0.006) (0.004)
Constant 0.118*** 0.114%** 0.165%** 0.116%*** 0.197*** 0.226%** 0.162%*** 0.219%**
(0.004) (0.009) (0.007) (0.008) (0.011) (0.009) (0.005) (0.003)
R? 0.023 0.014 0.015 0.010 0.014 0.001 0.018 0.001
N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p <0.01, ** p < 0.05, * p <0.10.
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When the treatment is redefined using 30-year average CDD, the OLS projection results (Table
11) reinforce the baseline findings. By air conditioning type, central AC households continue to
consume more than unitary AC users, with a pronounced lower-percentile response (34% at the
25th-percentile CQTE) even as upper-tail CSQTE effects decline (21%). Evaporative coolers
retain large distributional sensitivity, with a sizable lower-tail CQTE effect (36.8%). The income
gradient remains hump-shaped, with middle-income households, particularly those earning $60k—
$79k, again exhibiting the strongest distributional response (68% at the 25th-percentile CQTE),
while upper-income groups show more moderate increases, reinforcing that the highest marginal

burden falls on the middle of the income distribution.

Racial heterogeneity also persists and intensifies as minority groups, especially Blacks, Asian,
Native American and Pacific Islander households bear substantial burden from increased cooling
demand. For example, Asian households show the largest lower-tail effect (76% at the 25th-
percentile CQTE), while Native American and Multiracial households record strong upper-tail
responses (60—65% at the 75th-percentile CQTE). Housing results also aligns with mobile homes
exhibiting asymmetric responses where lower-tail consumption is above baseline (27.9% at the
25th-percentile CQTE compared to 23.6% apartment homes) while single-family homes record
38.9% increase at the 25th percentile and 31.6% at the 75th percentile and 31.1% at the 25th
percentile and 21.0% at the 75th percentile for CSQTE model, confirming that single-family

homes bear disproportionately higher effects in terms of household electricity consumption.
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Table 11: Heterogeneous effects under 30-Year average CDD treatment threshold

CATE (S CATE (T CATE (X CATE (DR CQTE (25) CQTE (75) CSQTE CSQTE
Learner) Learner) Learner) Learner) (25) (75)
Panel A: Air Conditioner Type
Central AC 0.040%** 0.053*** 0.036*** 0.066*** 0.068*** -0.015%* 0.123%** -0.041***
Type (0.004) (0.008) (0.006) (0.007) (0.008) (0.007) (0.003) (0.003)
Evaporative 0.072%** 0.044** 0.048*** 0.093%x** 0.063%** -0.458*#* 0.096%*** 0.070%**
coolers (0.012) (0.022) (0.016) (0.026) (0.026) (0.024) (0.008) (0.009)
Constant 0.160*** 0.163*** 0.178*** 0.152%** 0.258*** 0.277%** 0.187*** 0.231***
(0.004) (0.007) (0.0006) (0.007) (0.006) (0.0006) (0.003) (0.003)
R? 0.006 0.004 0.003 0.007 0.047 0.039 0.082 0.030
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel B: Income Group
$20k-$39k 0.026*** 0.039%** 0.034*** 0.030%** 0.0971*** 0.053%** 0.038*** 0.018***
(0.007) (0.012) (0.009) (0.011) (0.013) (0.012) (0.006) (0.004)
$40k-$59k 0.047%%* 0.052%** 0.049%** 0.049%** 0.179%** 0.120%** 0.042%** 0.044%**
(0.007) (0.012) (0.009) (0.011) (0.013) (0.012) (0.006) (0.005)
$60k—$79k 0.030%** 0.030** 0.032%** 0.051*** 0.291*** 0.084*** 0.056*** 0.023***
(0.008) (0.013) (0.010) (0.012) (0.014) (0.013) (0.006) (0.005)
$80k—$99k 0.034%** 0.032%** 0.041%** 0.028%** 0.072%** 0.087%** 0.037%** 0.013%**
(0.007) (0.012) (0.009) (0.011) (0.013) (0.012) (0.006) (0.005)
$100k+ 0.043*** 0.053*** 0.053*** 0.042%** 0.057*** 0.031%** 0.041*** 0.017***
(0.006) (0.011) (0.008) (0.009) (0.011) (0.011) (0.005) (0.004)
Constant 0.160%** 0.166*** 0.169%** 0.170%** 0.223%** 0.195%** 0.248*** 0.182%**
(0.005) (0.009) (0.007) (0.008) (0.010) (0.009) (0.004) (0.004)
R? 0.004 0.002 0.004 0.002 0.044 0.011 0.007 0.008
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel C: Household Race
Asian 0.093%** 0.148%** 0.144%*** 0.111%** 0.318%** 0.219%** 0.080%** 0.080%***
(0.016) (0.026) (0.019) (0.023) (0.028) (0.026) (0.013) (0.010)
Multiracial 0.083*** 0.122%** 0.125%** 0.096*** 0.036 0.126%** 0.089%** 0.066***
(0.018) (0.026) (0.021) (0.026) (0.034) (0.032) (0.013) (0.010)
Native 0.087%** 0.108** 0.139%** -0.040 -0.165%** 0.233%** 0.046** 0.099***
American (0.027) (0.044) (0.039) (0.050) (0.054) (0.050) (0.021) (0.018)
Pacific 0.125 0.137 0.126 -0.072 0.086*** 0.136** 0.153** 0.082*
Islander (0.087) (0.111) (0.089) (0.134) (0.144) (0.133) (0.062) (0.043)
White -0.002 -0.005 0.007 -0.014 -0.018 0.061%** 0.008 0.035%**
(0.007) (0.011) (0.008) (0.011) (0.012) (0.011) (0.006) (0.004)
Constant 0.189*** 0.201*** 0.193*** 0.212%** 0.330*** 0.189%** 0.274%** 0.166***
(0.007) (0.011) (0.008) (0.011) (0.011) (0.010) (0.006) (0.004)
R? 0.011 0.010 0.015 0.007 0.032 0.012 0.012 0.013
N 13198 13198 13198 13198 13198 13198 13198 13198
Panel D: Housing Type
Mobile Home  0.055%*%* 0.147*** 0.095%** 0.072%** -0.034%* 0.020 0.060*** 0.045%**
(0.008) (0.017) (0.012) (0.015) (0.017) (0.016) (0.007) (0.007)
Single family ~ 0.036*** 0.051%** 0.025%** 0.021%** 0.106*** 0.147%** 0.054*** 0.030%**
Home (0.005) (0.009) (0.007) (0.008) (0.009) (0.009) (0.004) (0.003)
Constant 0.162%*** 0.158*** 0.184*** 0.185%** 0.246*** 0.138*** 0.241*** 0.176***
(0.005) (0.008) (0.006) (0.008) (0.009) (0.008) (0.004) (0.003)
R? 0.005 0.008 0.005 0.002 0.015 0.027 0.015 0.008
N 13198 13198 13198 13198 13198 13198 13198 13198

Standard errors in parentheses. Significance: *** p <0.01, ** p < 0.05, * p <0.10.
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5.0 Conclusion

This study examined the heterogeneous causal effects of climate-driven cooling demand on
household electricity consumption using 2020 Residential Energy Consumption Survey (RECS)
data in a causal machine learning framework grounded in the potential outcomes approach. The
analysis proceeds in three parts. First, CATE are estimated to identify how the causal impact of
high versus low cooling demand varies across households with different characteristics. Second,
CQTE and CSQTE are used to assess how treatment effects differ across the electricity
consumption distribution, capturing heterogeneity among low- and high-consuming households.
Third, the estimated treatment effects are projected onto key household attributes including income
level, race or ethnicity, air conditioning type, and housing structure to determine which groups are

most affected by rising cooling needs.

The findings show that elevated cooling demand substantially increases household electricity
consumption. CATE estimates indicate that households facing higher-than-average cooling needs
use about 32-34% more electricity than peers within the same climate zone. CQTE and CSQTE
results show this burden is uneven: lower-consuming households experience increases of 21-23%,
compared to 15-19% for higher-consuming ones. Robustness checks confirm the stability of these
effects under alternative definitions of heat exposure. When treatment is defined as CDD above
the 75th percentile, electricity use rises by 13.9-22.1% on average and remains elevated across the
distribution. Using 30-year average CDD as treatment yields similar results, with CATE effects of
16-18.5% and CQTE/CSQTE effects up to 26-30% in the lower tail, underscoring the persistent

and unequal impact of rising cooling demand on household energy use.

Further disaggregation based on OLS projection by air conditioning system types show important
differences in electricity consumption responses. Households with evaporative coolers
consistently exhibit the highest average increases, with CATE projection suggesting up to 53.6%
higher consumption relative to unitary AC users. Central AC users also show strong effects,
averaging 37.7%. However, the CQTE results indicate greater responsiveness for central AC users
at both the 25th and 75th percentiles compared to evaporative coolers. This pattern reverses under
the CSQTE models, where evaporative coolers are associated with significantly larger increases,

particularly at the upper tail (up to 37.7%).
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Income-based heterogeneity uncovers a non-linear pattern in electricity consumption due to
cooling demand. While all groups experience notable increases, middle-income households
($60,000-$79,000) show the highest responsiveness in average consumption, with effects peaking
at 43%. The CQTE model highlights the largest effects in the 25th percentile for middle-income
households (up to 67%) and in the 75th percentile for those in the mid-to-upper brackets (around
55%). The CSQTE estimates are more evenly distributed but still suggest slightly higher impacts
among middle-income groups. These results indicate that while the burden of cooling demand is
widespread, mid-income households disproportionately bear the highest average impact, though

the tails of the distribution reflect more diffuse effects.

Finally, projections by household race and housing type confirm additional heterogeneity. Relative
to Black households, Asian households exhibit similar average consumption increases under
CATE but significantly higher effects at the lower and upper quantiles (CQTE and CSQTE). In
contrast, White households show lower responsiveness across most models. Native American and
Pacific Islander households face the steepest increases, particularly in the distribution tails, with
some effects exceeding 70%. Regarding housing, single-family homes consistently show higher
responsiveness to cooling demand compared to apartments and mobile homes. While mobile
homes exhibit large average increases under CATE (up to 46%), these effects are not statistically

significant in the CQTE or CSQTE projections.

The two robustness checks—redefining treatment as 2020 CDD above the climate-zone 75th
percentile and using 30-year average CDD above the zone mean—confirm the baseline OLS
projection results across the CATE, CQTE, and CSQTE specifications. In CATE, central AC
households show persistently higher consumption, while CQTE show strong lower-tail responses
(28%—34% at the 25th quantile) and CSQTE indicate flatter or declining upper tails. Evaporative
coolers display more variable distributional effects, with CQTE capturing large impacts in either
the upper or lower tail depending on the treatment definition, and CSQTE showing concentrated
upper-tail burdens. The income gradient remains robustly hump-shaped, with the $60k—$79k
group showing the largest effects—CQTE at the 25th quantile exceeds 60% —while higher-income
households consistently exhibit smaller upper-tail responses in CQTE and CSQTE. Racial
disparities persist across both specifications, with minority groups such as Black, Asian, Native

American, and Pacific Islander households bearing substantial burden of electricity consumption
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following increased cooling demand. Housing type patterns are also robust, with single-family

households disproportionately more affected relative to apartments and mobile homes.

The CQTE projection results align closely with the UQR interaction estimates, producing the
similar responsiveness while adding causal quantile-specific effect. Both approaches show central
AC households as more responsive than unitary AC users, but CQTE refines this by showing that
the excess burden is concentrated in the lower tail, whereas evaporative coolers have smaller, more
balanced effects across tails. The income gradient observed in UQR is also confirmed, with CQTE
highlighting heavier upper-tail burdens for mid-to-upper income households and a pronounced
lower-tail peak for $40k—$59k households, indicating a non-monotonic pattern. These patterns are
reinforced by the CSQTE projections, which show that extreme consumption burdens follow
similar subgroup hierarchies but are more evenly distributed across income groups, with certain
technologies (e.g., evaporative coolers) and racial groups (e.g., Pacific Islanders, Native
Americans) exhibiting the steepest tail responses. The CATE results further support these findings
by confirming that the subgroups identified as most responsive in the quantile models—such as
households with central AC or evaporative coolers, middle-income earners, and certain minority
racial groups—also face the largest average heat-related electricity burdens across the full

distribution.

The findings from this study underscore that climate-driven cooling demand imposes significant
and uneven burdens on household electricity use, with impacts varying by consumption level,
technology type, income, race, and housing structure. This heterogeneity underscores that one-
size-fits-all energy efficiency or climate adaptation policies may fail to protect the most vulnerable
subgroups. For example, middle-income households, minority racial groups, and households with
evaporative coolers or central AC face disproportionately high average or tail burdens, suggesting
the need for targeted policies that are sensitive to subgroup-specific vulnerabilities. The disparities
suggest that rising cooling needs could exacerbate existing inequalities in energy costs, particularly

under extreme heat conditions.

Methodologically, this study advances the growing literature on applying causal machine learning
techniques in energy and climate research. By integrating CATE, CQTE, and CSQTE estimators

with OLS projection, and employing robust treatment assignment strategies, the study generates
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effects that are plausibly causal. This framework enhances the internal validity of the results and
provides a replicable template for future empirical research on climate—energy interactions using
high-dimensional observational data. The consistency of results across alternative treatment
definitions further reinforces their credibility for informing both short-term heat adaptation
measures and long-term climate resilience strategies. In practical terms, policies such as energy
efficiency retrofits, targeted subsidies for high-efficiency cooling systems, and tailored demand-
side management programs can play a critical role in alleviating the disproportionate burden borne

by high-risk households.
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