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ABSTRACT 

This study examines the heterogeneous causal effects of climate-driven cooling demand on U.S. 

household electricity consumption using 2020 Residential Energy Consumption Survey data and 

a causal machine learning framework. Estimates of conditional average treatment effect (CATE), 

conditional quantile treatment effect (CQTE), and conditional super quantile treatment effect 

(CSQTE) show substantial increases in electricity consumption under elevated cooling degree days 

(CDD), with average effects of 32–34% and disproportionate burdens concentrated among lower-

consuming households. OLS projections of CATE, CQTE, and CSQTE estimates highlight 

significant subgroup variation: households with central AC and evaporative coolers, middle-

income earners ($60k–$79k), and minority racial groups face the highest burdens, while single-

family homes exhibit consistently stronger responses than apartments or mobile homes. 

Robustness checks using alternative treatment definitions (CDD above the 75th percentile and 30-

year average CDD) confirm the stability of results. These findings underscore that climate-driven 

cooling demand exacerbates distributional inequalities in energy use, reinforcing the need for 

targeted efficiency and adaptation policies that account for subgroup vulnerabilities. 
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1.0 Introduction 

Rising heat exposure under climate change is reshaping residential electricity use in uneven ways 

across households and regions, with implications for affordability, peak-load management, and 

equity (Hernández 2013; Carley and Konisky 2020; Bednar and Reames 2020). In the United 

States, cooling needs are an increasingly salient driver of household demand as heatwaves 

intensify and lengthen, shifting seasonal load profiles and stressing distribution networks 

(Steinberg et al. 2020; Bawaneh et al. 2024). Cooling degree days (CDD) provide a policy-relevant 

metric for quantifying these needs and have become central to modeling temperature–electricity 

relationships (Isaac and van Vuuren 2009; Sailor 2001). 

 

The objective of this study is to analyze how climate-induced cooling demand disproportionally 

impacts U.S. household electricity consumption across population subgroups and levels of energy 

use. Using a causal machine learning framework grounded in the potential outcomes approach, the 

study aims to uncover heterogeneous responses to cooling demand, quantify how these effects vary 

across the consumption distribution, and identify which household groups are most affected by 

rising cooling needs. By focusing on both the average and distributional effects, the analysis 

provides evidence relevant for designing equitable and adaptive energy policies. 

 

Several studies including Auffhammer & Aroonruengsawat (2011) and Deschênes & Greenstone 

(2011) document the strong links between temperature and residential electricity consumption, 

including responses during extreme heat. Yet mean-based approaches can mask important 

dispersion in responses across households with different technologies, building stocks, and 

resources. Moreover, program evaluations and pricing pilots show wide heterogeneity in demand 

responses, underscoring the need to understand who bears the largest marginal burden when 

cooling demand rises (Reiss & White 2005; Ito 2014; Knittel & Stolper 2022). These findings 

motivate the use of flexible causal inference methods capable of capturing complex and 

heterogeneous behavioral responses to climatic variation. 

 

This study adopts a causal machine learning (ML) framework to move beyond descriptive 

associations. Unlike unconditional quantile regression, which relies on functional-form 

assumptions and influence function projections (Firpo et al. 2009), causal ML is grounded in the 

potential outcome framework, enabling estimation of treatment effects that vary across households 
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and the consumption distribution. Although increasingly applied in other policy contexts (Athey 

et al. 2019; Knittel & Stolper 2022), its use in climate–energy analysis remains limited. 

Methodologically, causal ML framework flexibly capture nonlinear, high-dimensional interactions 

(Wager & Athey 2018; Athey et al. 2019), while orthogonalization and cross-fitting minimize bias 

and overfitting, ensuring valid inference under standard causal assumptions (Chernozhukov et al. 

2018; Nie & Wager 2021; Künzel et al. 2019). These properties are particularly valuable with 

survey-based energy data, where the effects of climate exposure are mediated by diverse 

demographic and technological factors.  

 

The study uses 2020 RECS microdata for the analysis. Based on geographic variation in cooling 

exposure, the treatment is defined as a binary indicator equal to one if a household’s CDD exceeds 

the mean CDD of its climate zone, enabling within-zone comparisons. This zone-specific 

normalization controls for structural climatic differences and enables meaningful within-zone 

comparisons of cooling-related electricity consumption. Balance checks on pre-treatment 

covariates are conducted within ±75, ±100, and ±125 CDD bandwidths using standardized mean 

differences. Robustness is assessed via two alternative treatment definitions: first, households 

above the 75th percentile of CDD within their climate zone, and second, households whose 30-

year average CDD exceeds the zone-specific mean. Estimated CATE, CQTE, and CSQTE effects 

are projected via OLS onto household characteristics, linking nonparametric results to observable 

traits and showing subgroup patterns for targeted energy policies.  

 

The findings show that higher cooling degree days significantly increase household electricity 

consumption by roughly 32–34% on average with disproportionately larger effects among lower-

consuming, minority, and middle-income households. These results highlight widening energy-

use inequalities under climate stress and underscore the importance of targeted efficiency and 

adaptation policies that address household-level vulnerabilities. 

 

The remainder of this study is organized as follows. Section 2 presents the literature review, 

summarizing prior evidence on causal ML approaches and highlighting the contribution of this 

study to the growing causal and distributional literature on climate–energy interactions. Section 3 

outlines the methodological framework, including data description, treatment construction, and the 

empirical model. Section 4 discusses the empirical results, emphasizing heterogeneity across 
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household groups and consumption levels. Finally, Section 5 concludes with key policy 

implications for energy equity and climate adaptation. 

 

2.0 Literature Review 

2.1 Conditional Average Treatment Effects Estimation 

The estimation of Conditional Average Treatment Effects (CATE) is central to understanding 

treatment effect heterogeneity, particularly in observational and experimental studies. Over the 

years, researchers have advanced various methodologies employing statistical and machine 

learning techniques to address challenges such as high-dimensional data, confounding variables, 

and treatment effect heterogeneity. Hill (2011) introduced Bayesian Additive Regression Trees 

(BART), a nonparametric Bayesian method for modeling response surfaces. BART flexibly 

estimates heterogeneous treatment effects by focusing on the response surface, outperforming 

traditional methods like propensity score matching in nonlinear settings. Its ability to handle high-

dimensional covariates makes it particularly suitable for complex datasets. Similarly, Souto and 

Neto (2024) expanded on BART with their K-Fold Causal BART model, which combines 

Bayesian regression trees with cross-validation to improve the estimation of both ATE and CATE, 

though it exhibited limitations in certain real-world datasets. 

 

Strittmatter (2023) demonstrated the practical utility of causal machine learning (CML) in policy 

evaluations, where CML offered nuanced insights into treatment heterogeneity beyond traditional 

estimators. Kim et al. (2023) further emphasized the importance of CATE estimation in clustered 

data, applying methods such as causal forests and BART to address cross-level interactions. These 

methods provided valuable insights into educational policy decisions by accounting for the 

interactions between individual and community-level covariates. Kato and Imaizumi (2023) 

introduced CATE Lasso, which leverages implicit sparsity in high-dimensional linear models to 

achieve robust and consistent estimates, validating its effectiveness in distinguishing treatment-

specific effects through simulation studies. 

 

Hahn et al. (2020) proposed Bayesian causal forests as an advanced method for estimating 

heterogeneous treatment effects in the presence of strong confounding. By incorporating 

propensity score estimation and separately regularizing treatment heterogeneity, their approach 

addressed biases in nonlinear models. Similarly, Gbadegesin and Yameogo (2024) demonstrated 
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the potential of hybrid methodologies by combining machine learning models like Gradient 

Boosting and XGBoost with targeted maximum likelihood estimation. Their work highlights how 

updating initial predictions with clever covariates improves treatment effect estimation efficiency. 

 

Wager and Athey (2018) introduced the causal forest algorithm, which extends Breiman’s random 

forests to estimate heterogeneous treatment effects. Their method is notable for its ability to 

construct asymptotically valid confidence intervals, making it particularly effective in high-

dimensional settings. Expanding on causal forests, Oprescu et al. (2019) proposed orthogonal 

random forests, which integrate Neyman-orthogonality with generalized random forests. This 

approach reduces sensitivity to nuisance parameter estimation errors and performs robustly in both 

discrete and continuous treatment scenarios. 

 

Künzel et al. (2019) developed meta-algorithms, including the X-learner, which enhances the 

efficiency of CATE estimation, especially when treatment group sizes are imbalanced. The X-

learner integrates base learners like random forests and BART, leveraging structural properties of 

the CATE function for flexible and efficient estimation. Extending this line of research, Machluf 

et al. (2024) introduced ensemble methods such as the Stacked X-Learner and Consensus-Based 

Averaging (CBA). These methods aggregate multiple estimators to improve robustness and 

stability in CATE estimation, particularly in scenarios with high uncertainty or varying data-

generating processes, demonstrating superior performance across diverse datasets. 

 

2.2 Double Machine Learning and Orthogonal Statistical Learning 

Double machine learning (DML) and orthogonal statistical learning have emerged as robust 

methodologies for addressing causal inference challenges, particularly in high-dimensional 

settings with complex nuisance parameters. These methods leverage advancements in machine 

learning to mitigate issues like bias from regularization and overfitting while enabling efficient 

estimation of treatment effects, including heterogeneous effects. Chernozhukov et al. (2018) 

introduced the DML framework, which uses Neyman-orthogonal moments and cross-fitting to 

achieve consistent and asymptotically normal estimates of CATE. This framework is highly 

flexible, accommodating machine learning algorithms like random forests, lasso, ridge regression, 

and neural networks for nuisance parameter estimation. The versatility of DML has been 
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demonstrated in models ranging from partially linear regression to instrumental variables and 

treatment effect estimation, underscoring its broad applicability. 

 

Building on Chernozhukov et al. (2018), Bach et al. (2022) developed DoubleML, an open-source 

Python library that integrates DML with machine learning models, facilitating its adoption in 

empirical research. This tool provides functionalities for valid statistical inference across various 

causal models, solidifying DML's position as a cornerstone in modern causal inference. Knaus 

(2021) showcased DML's adaptability by applying it to assess the effects of musical practice on 

youth development. This study highlighted practical considerations in implementing DML, such 

as parameter tuning and covariate balancing, demonstrating its ability to address real-world 

complexities while maintaining robust inference. 

 

Orthogonal learning has also made significant contributions to causal inference, particularly 

through its capacity to manage nuisance parameter estimation errors. Foster and Syrgkanis (2019) 

provided theoretical guarantees for excess risk in models involving nuisance parameters, 

demonstrating the robustness of orthogonal learning in high-dimensional and nonparametric 

settings. Mackey et al. (2018) and Zadik et al. (2018) extended this framework to orthogonal 

machine learning, introducing higher-order orthogonality to enhance robustness in non-linear and 

complex causal inference tasks. Athey and Wager (2021) further advanced the field by applying 

orthogonal statistical learning to policy optimization. Their methodology integrates doubly robust 

estimators with optimization techniques, allowing for the design of treatment policies that balance 

fairness, budget constraints, and other considerations. 

 

Extensions of the DML framework to heterogeneous treatment effect estimation have provided 

critical insights into optimality in causal inference. Kennedy (2020) proposed a doubly robust 

CATE estimator that achieves faster error rates in smooth nonparametric models, advancing the 

understanding of statistical limits in heterogeneous treatment effects. Ichimura and Newey (2022) 

emphasized the utility of influence functions in semiparametric models for debiasing estimators, 

providing robust tools for policy evaluation in the presence of complex nuisance structures. These 

advancements have proven transformative for empirical research, as demonstrated by applications 

in dose-response relationships (Knaus, 2021) and policy learning (Athey & Wager, 2021). 
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Despite their strengths, DML and orthogonal learning methods face practical challenges, including 

computational complexity and sensitivity to tuning parameters. Kennedy (2020) and Knaus (2021) 

highlighted the importance of careful parameter tuning and covariate balancing in high-

dimensional applications. Additionally, Mackey et al. (2018) and Zadik et al. (2018) noted the 

scalability limitations of higher-order orthogonal moments in large datasets. These challenges 

underscore the need for further methodological refinements to enhance the scalability and 

efficiency of these approaches in applied settings. 

 

2.3 Distributional Treatment Effects Estimation 

The estimation of distributional treatment effects (DTE) provides a comprehensive framework for 

understanding how treatments impact the entire distribution of an outcome, rather than limiting 

the analysis to average effects. Chernozhukov et al. (2013) laid the foundation for modeling 

counterfactual distributions using regression-based methods, enabling the analysis of full outcome 

distributions. Their work introduced techniques to construct confidence sets for functional effects 

like quantile functions, facilitating applications in policy analysis such as wage decompositions. 

This framework offered distribution regression as a robust alternative to quantile regression, 

emphasizing its flexibility. Later, Chernozhukov et al. (2020) extended these methodologies to 

nonlinear network and panel models, addressing challenges like unobserved two-way effects and 

incidental parameter problems. Their approach, which constructs confidence bands for quantile 

functions, has proven effective in analyzing complex datasets, including trade networks. 

 

The integration of machine learning into DTE estimation has significantly advanced the field, 

offering new tools for addressing treatment heterogeneity. Zhou and Carlson (2021) proposed 

Collaborating Causal Networks (CCN), a flexible framework for estimating full potential outcome 

distributions without restrictive assumptions about the data-generating process. CCN excels in 

capturing distributional variations, particularly in tail behavior and risk profiles, making it a 

valuable tool for nuanced decision-making. Park et al. (2021) introduced the Conditional 

Distributional Treatment Effect (CoDiTE), which generalizes the CATE framework to higher-

order moments of treatment effects. Their methodology, based on kernel conditional mean 

embeddings and U-statistic regression, has been successful in analyzing real-world and synthetic 

datasets, highlighting its utility in understanding tail events and distributional shifts. Kallus and 
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Oprescu (2023) further contributed by developing a model-agnostic approach for estimating 

Conditional DTEs (CDTEs). Their pseudo-outcome-based framework provides robust estimates 

of quantile and super-quantile treatment effects, particularly under model misspecification, making 

it valuable for fields like financial risk assessment. 

 

Machine learning has also enhanced the precision of DTE estimation in experimental settings. 

Byambadalai et al. (2024) developed a regression adjustment method that integrates pre-treatment 

covariates into distributional regression frameworks, reducing variance and improving estimator 

precision in randomized experiments. Linden and Yarnold (2016) tackled the challenges of 

multivalued treatments by employing optimal discriminant analysis, which they argued 

outperforms regression-based estimators in capturing heterogeneity across treatment groups. 

Similarly, localized debiased machine learning, introduced by Kallus et al. (2019), addresses 

complexities in quantile treatment effect estimation by focusing on parameter-dependent 

nuisances, achieving robust performance in high-dimensional settings. Belloni et al. (2017) further 

emphasized the importance of orthogonal moment conditions for ensuring valid inference in high-

dimensional environments, demonstrating their utility in estimating both local and global QTEs. 

 

Recent innovations have also highlighted the scalability of DTE estimation in applied contexts. 

Wu et al. (2023) introduced DNet, a novel architecture capable of estimating distributional 

individualized treatment effects. DNet’s strength lies in its ability to model entire outcome 

distributions, particularly in heavy-tailed settings, and its successful deployment in applications 

like mobile app optimization underscores its robustness and scalability. Finally, Curth et al. (2024) 

explored the application of DTEs in clinical settings, focusing on tailoring treatments to individual 

patient characteristics. Their review emphasized the challenges of covariate shift and identification 

assumptions, advocating for methodological advancements to enhance the applicability of DTE 

estimation in diverse contexts. 

 

Hsu et al. (2023) introduced a double/debiased machine learning framework to estimate direct and 

indirect quantile treatment effects, achieving robust results even under model misspecifications. 

Their method was validated through simulations and applied to assess earnings effects in the 

national job corps study. Kallus et al. (2024) proposed localized debiased machine learning to 

efficiently estimate local quantile treatment effects while reducing computational complexity, 
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demonstrating robust performance in high-dimensional settings. Similarly, Chen, Huang, and Tien 

(2021) extended debiased machine learning to instrumental variable quantile regression, 

effectively handling high-dimensional controls and providing insights into the quantile treatment 

effects of 401(k) participation on wealth. These studies underscore the growing precision and 

applicability of DTE estimation techniques. 

 

2.4 Application of CATE and DTE in Energy and Climate Research 

While the application of ML to CATE and DTE is well-established in fields such as healthcare 

and economics, its integration into energy and climate research is still emerging. Currently, 

relatively few studies explicitly apply ML methods to estimate CATE and DTE in these fields. For 

example, Knittel and Stolper (2021) applied causal forests to assess the heterogeneous effects of 

energy conservation nudges, uncovering substantial variations in household electricity reductions 

and highlighting the potential for ML to personalize energy interventions. Klosin and Vilgalys 

(2022) employed DML to estimate the effects of extreme heat on U.S. corn production, showcasing 

the effectiveness of ML methods in capturing complex, non-linear relationships and quantifying 

the impacts of extreme weather. In climate-focused applications, Giannarakis et al. (2022) 

employed CATE estimation to assess the effects of sustainable agricultural practices on soil 

organic carbon, emphasizing the need for localized interventions to enhance carbon sinks. Gadea 

and Gonzalo (2023) advanced the analysis of climate heterogeneity by examining the full 

temperature distribution, and regional variations in warming patterns that demand tailored 

mitigation strategies.  

 

This study applies the robust, model-agnostic framework for CDTE estimation developed by 

Kallus and Oprescu (2023), alongside CATE estimation, to address key challenges in energy and 

climate research, including model misspecification, high-dimensional covariates, and the need to 

capture heterogeneity across the outcome distribution. While CATE estimation identifies average 

treatment effect variation across subgroups, CDTE extends this by quantifying how treatment 

effects differ at different points of the conditional outcome distribution, providing a richer picture 

of heterogeneity. Both approaches leverage recent advances in causal machine learning, including 

pseudo-outcome regressions, cross-fitting, orthogonalization, and flexible learners such as causal 

forests and double/debiased machine learning, ensuring robustness without relying on restrictive 

functional form assumptions.  
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3.0 Methodology 

3.1 Data Sources and Description 

This study uses data from the 2020 Residential Energy Consumption Survey (RECS), a nationally 

representative dataset collected by the U.S. Energy Information Administration (EIA) that 

provides detailed information on household energy use, housing characteristics, and demographics 

across the United States. Focusing on the 2020 wave ensures analytical consistency within a recent 

and homogeneous context while leveraging its larger sample size. Using a single wave rather than 

pooled data avoids challenges common in multi-year analyses such as attrition, respondent 

conditioning, and inconsistent follow-up sampling which can bias comparisons across survey years 

(Lipps 2021; Lebo & Weber 2015).  

 

The dataset undergoes systematic cleaning prior to analysis. Observations with imputed values for 

key variables like electricity use and thermostat settings are excluded using EIA-provided 

imputation flags. Continuous variables are trimmed at the 1st and 99th percentiles to reduce outlier 

influence and log-transformed to address right-skewed distributions, enabling elasticity-based 

interpretations. Categorical variables, including appliance ownership, household type, and 

demographic characteristics, are retained in their original form unless invalid or missing. After 

cleaning, the final analytical sample includes 13,198 households from 18,496 households. 

Descriptive statistics are weighted to ensure national representativeness, with means, proportions, 

and percentiles reflecting population-level distributions. 

 

3.2 Descriptive Statistics 

Table 1 summarizes the composition of U.S. households in the 2020 RECS sample based on key 

categorical characteristics. Geographically, households are concentrated in the Cold & Very Cold 

(35%) and Mixed Humid (34%) climate zones, with smaller shares located in the Hot Humid 

(18%), Hot/Mixed Dry (10%), and Marine (2%) regions. In terms of cooling systems, the majority 

of households (78%) rely on central air conditioning, while 20% use unitary AC systems, and only 

2% utilize evaporative coolers. The income composition shows that over a quarter (28%) of 

households earn more than $100,000 annually, while 13% fall below the $20,000 threshold. The 

sample is predominantly composed of White households (83%), followed by Black (10%), Asian 

(4%), and smaller shares of multiracial, Native American, and Pacific Islander households. In 

terms of housing structure, 71% of households live in single-family homes, with apartments (24%) 
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and mobile homes (6%) comprising the rest. Finally, 82% of households report the presence of 

insulation, which plays a significant role in moderating cooling energy demand. 

 

Table 1: Weighted proportions of categorical variables 
 

Unweighted Count Weighted Population Weighted Proportion 

Marine Climate Zone 306                 2,076,919  0.02 

Cold & Very Cold Climate Zone 5407              31,731,365  0.35 

Hot Humid Climate Zone 1780              16,583,898  0.18 

Hot and Mixed Dry Climate Zone 985                 8,655,676  0.10 

Mixed Humid Climate Zone 4720              30,732,803  0.34 

Central AC Type 10329              69,848,961  0.78 

Unitary AC Type 2519              17,983,154  0.20 

Evaporative Coolers 350                 1,948,547  0.02 

Below 20k 1492              11,879,551  0.13 

20k-39k income group 2333              17,340,342  0.19 

40k-59k income group 2105              14,757,166  0.16 

60k-79k income group 1458                 9,611,087  0.11 

80k-99k income group 1758              11,239,435  0.13 

100k and above income group 4052              24,953,081  0.28 

Asian Households 452                 3,584,970  0.04 

Black Households 1083                 8,930,101  0.10 

Multiracial Households 276                 2,107,728  0.02 

Native American Households 92                      629,053  0.01 

Pacific Islander Households 21                      176,589  0.00 

White Households 11274              74,352,220  0.83 

Apartment Homes 2235              21,158,557  0.24 

Mobile Homes 699                 5,020,957  0.06 

Single Family Homes 10264              63,601,148  0.71 

Presence of Insulation 11112              73,646,759  0.82 

Not Insulated 2086              16,133,903  0.18 

 

Table 2 presents weighted descriptive statistics for key continuous variables used in the analysis. 

On average, U.S. households consumed approximately 2,153 kWh of electricity annually for 

cooling, with substantial variation across the sample (SD: 1,702 kWh), and values ranging from 

76 kWh to over 10,000 kWh. Climate exposure measures show an average of 1,674 CDD and 

3,787 HDD. The typical household cooled about 1,484 square feet, lived in a dwelling with six 

rooms, and had an average household size of two people. In terms of long-term climate norms, the 

30-year CDD average (CDD30YR) was 1,449, with a right-skewed distribution extending to 
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nearly 4,000. Lighting behavior, measured by the number of bulbs on for 1–4 hours daily, had a 

mean of 5 bulbs, with notable variation across households (ranging from 0 to 30).  

 

Table 2: Weighted statistics for continuous variables 
 

Count Mean Std Dev Min 25th 

Percentile 

Median 75th 

Percentile 

Max 

Household Electricity 

Consumption (kWh) 

13198 2152.83 1701.92 76.32 903.22 1677.49 2923.20 10124.60 

Cooling degree days 13198 1674.06 1008.05 221.00 954.00 1335.00 2067.00 5082.00 

Heating degree days 13198 3786.52 1981.50 99.00 2083.80 4172.74 5356.00 8681.00 

Cooled SqFt 13198 1483.98 939.43 140.00 780.00 1300.00 2000.00 4800.00 

Total Number of Rooms 13198 6.33 2.25 1.00 5.00 6.00 8.00 15.00 

Household Size 13198 2.43 1.35 1.00 1.00 2.00 3.00 7.00 

CDD30YR 13198 1449.35 872.17 209.00 781.00 1186.00 1898.00 3965.00 

Bulbs on for 1-4hrs 13198 5.08 4.90 0.00 2.00 4.00 6.00 30.00 

 

3.3 Outcome Variable of Interest 

The primary outcome variable is annual household electricity consumption for space cooling, 

measured in kilowatt-hours (kWh). This measure is derived from calibrated RECS estimates, 

reflects household-level cooling loads across different system types and climate conditions, 

including central air conditioning, window/wall units, and evaporative coolers, but excludes non-

system fans and blowers. In the energy economics literature, measuring household electricity use 

in physical units (kWh) is widely regarded as more accurate and behaviorally informative than 

relying on expenditure-based measures. Physical consumption captures actual energy use, 

independent of price variability, billing structures, and regional subsidies that often distort 

expenditure data (Andor et al. 2021; and Wang et al. 2023). 

 

Figure 1 presents the distribution of household electricity consumption (kWh), weighted to reflect 

the national population. The distribution is unimodal and approximately normal, with mild right 

skewness, indicating that while most households cluster around the center, a smaller proportion 

consumes substantially higher amounts of electricity. The median consumption is 7.43, with the 

25th and 75th percentiles at 6.81 and 7.98, respectively. These correspond to approximately 1,684 

kWh, 907 kWh, and 2,947 kWh, highlighting substantial variation in cooling-related electricity 

usage across U.S. households. 

 

 



 13 

Figure 1: Distribution of U.S. household electricity consumption 

 

3.4 Descriptive Analysis of Cooling Demand 

Cooling Degree Days (CDD) serve as the primary climate metric for assessing household cooling 

needs. CDD measures the cumulative annual temperature deviation above a 65 °F threshold, 

representing the intensity of cooling requirements across locations. For each household in the 2020 

RECS sample, annual CDD values are matched from the nearest National Climate Data Center 

station, capturing regional variation in climate exposure. Widely applied in energy and climate 

studies (Cartalis et al. 2001; Sailor & Pavlova 2003; Isaac & Van Vuuren 2009; Petri & Caldeira 

2015; Emenekwe & Emodi 2022), CDD provides a consistent proxy for quantifying climate-driven 

cooling demand. 

 

Figure 3.2 illustrates the distribution of CDD across U.S. households, showing a unimodal, slightly 

right-skewed pattern with a median of 7.20 (≈ 1,341 CDD) and an interquartile range from 6.86 

(954 CDD) to 7.63 (2,062 CDD). Panel B displays a similar but narrower spread, from 6.66 (778 

CDD) to 7.55 (1,889 CDD). Table 3 reports summary statistics by climate zone: households in Hot 

Humid regions record the highest average CDD (3,310), followed by Hot & Mixed Dry (2,254) 

and Mixed Humid (1,501), while Cold & Very Cold and Marine zones show substantially lower 

averages (896 and 637, respectively). The 30-year averages follow the same pattern with slightly 

lower magnitudes, reflecting spatial disparities in cooling demand across U.S. climates. 
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Figure 2: Distribution of 2020 CDD and 30yrs average among households 

 

 

Table 3: Weighted descriptive statistics of cooling degree days by climate zones 
 

Count Mean Std Dev Min 25th 

Percentile 

Median 75th 

Percentile 

Max 

Panel A: 2020 Cooling Degree Days 

Marine 306 636.89 411.31 221.00 331.74 477.73 846.21 2168.00 

Cold & Very Cold 5407 896.32 225.35 228.00 758.00 892.00 1046.00 2644.00 

Hot Humid 1780 3310.29 689.76 1773.00 2744.09 3313.00 3760.83 4896.00 

Hot & Mixed Dry 985 2254.37 976.62 553.00 1643.41 2001.73 2666.00 5082.00 

Mixed Humid 4720 1500.78 335.43 404.00 1265.00 1460.00 1720.00 2748.00 

Panel B: 30 Years Average Cooling Degree Days 

Marine 306 464.56 216.46 209.00 316.25 399.56 586.67 1741.00 

Cold & Very Cold 5407 727.34 223.74 209.00 562.00 722.48 882.00 2276.00 

Hot Humid 1780 2858.46 496.88 1591.00 2497.00 2812.00 3214.00 3965.00 

Hot & Mixed Dry 985 1752.96 826.53 283.00 1216.05 1545.05 2015.25 3965.00 

Mixed Humid 4720 1415.48 373.34 302.00 1128.40 1403.00 1671.00 2715.00 

 

3.5 Control & Moderating Variables 

To ensure robust identification of the impact of cooling demand on household electricity 

consumption, the model includes a set of control and moderating variables. Continuous controls 

are heating degree days (HDD), representing annual cold-weather exposure; cooled square footage 

and total number of rooms, reflecting dwelling size and energy demand; household size, capturing 

occupancy effects; and the number of light bulbs used for one to four hours daily, serving as a 

proxy for lighting intensity. Categorical controls include air-conditioning type (central, unitary, or 

evaporative), household income brackets, race (White, Black or African American, American 
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Indian or Alaska Native, Asian, Pacific Islander, or Multiracial), housing type (single-family, 

apartment, or mobile home), and insulation presence. 

 

In the subsequent analysis, heterogeneity in the effect of cooling demand is examined across key 

household characteristics, including income group, air-conditioning type, race, and housing type. 

These variables provide the basis for assessing subgroup-specific differences in energy responses 

to rising cooling needs and their selection align with established energy demand literature linking 

climatic (Sailor & Pavlova 2003; Isaac & Van Vuuren 2009), structural (Bedir et al. 2013; 

Kavousian et al. 2013), and socioeconomic factors (Hernández 2013; Bednar & Reames 2020; 

Petri & Caldeira 2015) to household energy use.  

 

Table 5 summarizes household electricity consumption across these covariates. Households in 

hotter climates, such as the Hot Humid zone, consume significantly more electricity (3,705 kWh) 

than those in Marine or Cold zones. Electricity use also increases with income, from 1,824 kWh 

among the lowest earners to 2,426 kWh for households earning over $100k. Single-family homes 

and central AC users exhibit higher consumption than apartments or users of unitary AC and 

evaporative coolers. Racial disparities are also evident, with Pacific Islander and White households 

using more electricity on average than Asian households. 
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Table 5: Descriptive statistics of household electricity consumption by projected covariates 
 

Count Mean Std Dev Min 25th 

Percentile 

Median 75th 

Percentile 

Max 

Panel A: Climate Zone 

Marine 306 1028.63 865.99 107.91 411.19 779.77 1337.81 7314.97 

Cold & Very Cold 5407 1345.91 965.13 76.32 649.66 1102.12 1790.28 8308.31 

Hot Humid 1780 3704.98 2043.78 124.91 2116.83 3410.17 5020.31 10124.60 

Hot & Mixed Dry 985 2168.34 1727.78 92.65 870.20 1628.69 3054.72 9478.86 

Mixed Humid 4720 2220.01 1514.03 113.01 1095.37 1872.65 2987.02 10031.42 

Panel B: Income Group 

Less–20k 1492 1824.00 1552.35 76.32 721.72 1362.82 2413.57 9511.89 

20k–39k 2333 1980.90 1555.66 102.26 824.67 1527.33 2765.87 9615.44 

40k–59k 2105 2146.69 1747.09 90.43 868.98 1633.27 2933.02 9890.57 

60k–79k 1458 2164.06 1660.75 110.12 908.98 1766.46 2870.83 8661.61 

80k–99k 1758 2158.46 1620.37 98.23 977.75 1701.31 2927.32 10031.42 

100k+ 4052 2425.62 1842.85 86.63 1075.94 1903.82 3263.88 10124.60 

Panel C: Housing Type 

Apartment Home 2235 1237.30 987.97 76.32 569.10 963.61 1636.76 8108.06 

Mobile Home 699 2344.84 1745.06 102.69 956.02 1904.85 3231.89 9615.44 

Single family 

Home 

10264 2442.24 1777.13 90.43 1118.19 1978.45 3301.39 10124.60 

Panel D: Air Conditioner Type 

Central AC 10329 2376.71 1757.04 86.63 1064.15 1898.99 3224.27 10124.60 

Unitary AC 2519 1373.55 1208.45 76.32 576.46 1008.11 1782.99 9615.44 

Evaporative 

Coolers 

350 1319.34 1105.18 103.87 560.14 1001.13 1648.92 6482.54 

Panel E: Household Race 

Black 1083 2207.40 1710.43 92.65 959.03 1734.44 3030.21 9816.55 

Multiracial 276 2185.36 1544.20 102.69 970.94 1896.68 2933.50 7589.40 

Native American 92 1901.65 1567.53 141.10 842.71 1508.40 2392.86 7390.69 

Pacific Islander 21 2540.97 1641.74 512.81 963.77 2165.57 3574.48 6793.60 

White 11274 2165.38 1705.94 76.32 915.18 1683.78 2942.36 10124.60 

Asian 452 1762.34 1657.02 105.42 628.67 1181.84 2340.36 9329.33 

 

3.6 Empirical Model 

To capture the heterogeneous impacts of climate change–induced cooling demand on household 

electricity consumption, this study employs an econometric strategy grounded in the potential 

outcome framework. The approach estimates electricity consumption under treated and untreated 

states, 𝑌𝑖(1) and 𝑌𝑖(0), allowing for causal inference conditional on observed covariates while 

accounting for variation across households and along the consumption distribution. 
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The empirical strategy proceeds in multiple stages. First, the treatment variable (𝐴𝑖) is constructed 

based on household-level CDD, capturing exposure to elevated cooling demand. Conditional 

Average Treatment Effects (CATE) are then estimated using meta-learners (S-, T-, X-, and DR-

learners), which flexibly model heterogeneous responses. The framework is further extended to 

estimate Conditional Distributional Treatment Effects (CDTE)—specifically, Conditional 

Quantile Treatment Effects (CQTE) and Conditional Superquantile Treatment Effects (CSQTE)—

to assess how cooling demand influences different points and tails of the electricity consumption 

distribution. Finally, each estimated treatment effect is projected onto key household and building 

characteristics using OLS to enhance interpretability and identify the subgroups most affected by 

rising cooling demand. 

 

3.6.1 Treatment Variable of Interest  

To capture variation in climate-driven cooling exposure across regions, this study defines a binary 

treatment indicator representing high cooling demand. A household i in climate zone z is 

considered treated if its 2020 Cooling Degree Days (𝐶𝐷𝐷𝑖,2020) exceed the mean CDD of its 

respective climate zone (𝐶̅𝐷𝐷𝑧,2020). This zone-specific normalization controls for structural 

climatic differences and enables meaningful within-zone comparisons of cooling-related 

electricity consumption. Formally, the treatment indicator is defined as: 

𝐴𝑖𝑧 = {
1,  𝑖𝑓 𝐶𝐷𝐷𝑖,2020 > 𝐶̅𝐷𝐷𝑧,2020

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
 

To assess the validity of this quasi-experimental treatment assignment, this study conducts balance 

checks using pre-treatment covariates. These covariates reflect key determinants of energy 

consumption and include indicators for climate zones, types of air conditioning equipment, 

household income ranges, racial identification of the household head, housing unit types, 

insulation levels, log-transformed cooled square footage, total number of rooms, household size, 

number of light bulbs used for 1–4 hours daily, and heating degree days (HDD). Balance is 

assessed by comparing treated and control households—those above and below the zone-specific 

mean CDD—within symmetric bandwidths of ±75, ±100, and ±125 CDDs. For each specification, 

two-sample t-tests and standardized mean differences (SMDs) are used to evaluate the similarity 

of covariates across groups. 
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SMDs is used as the balance metric because they are sample-size invariant and directly quantify 

covariate imbalance, consistent with best practices in causal inference (Austin 2009; Stuart 2010; 

Rosenbaum & Rubin 1985) and the broader tradition of balance diagnostics in observational 

designs (Ho et al. 2007; Imbens & Rubin 2015; Cattaneo & Titiunik 2022). Table 6 shows strong 

balance across all three bandwidths: the ±75 CDD window shows the strongest balance with nearly 

all SMDs well below 0.1; the ±100 bandwidth performs similarly, with small differences for mid-

income and White indicators that remain under the 0.1 threshold; and the wider ±125 window 

introduces modest variation, with most covariates balanced except for HDD at 0.13. Overall, 

SMDs remain within acceptable limits, demonstrating covariate balance and supporting the 

plausibility of exogenous variation around the climate-zone CDD threshold. 
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Table 6: Covariate balance around zone-specific CDD threshold using SMD 

 75 Bandwidth 100 Bandwidth 125 Bandwidth 

Variables T-Stat SMD T-Stat SMD T-Stat SMD 

Marine Climate Zone 0.441 0.018 -0.239 -0.009 -0.502 -0.016 

Hot and Mixed Dry Climate Zone -0.635 -0.026 -1.644* -0.059 -0.014 0.000 

Mixed Humid Climate Zone -1.660* -0.068 -1.272 -0.046 -2.493* -0.081 

Hot Humid Climate Zone -0.824 -0.033 -0.456 -0.016 0.125 0.004 

Central AC Type 1.383 0.056 1.639* 0.059 2.769* 0.089 

Evaporative Coolers AC Type 0.487 0.020 0.298 0.011 -0.101 -0.003 

20k-39k income range -0.003 0.000 0.229 0.008 -0.375 -0.012 

40k-59k income range -0.727 -0.029 -0.265 -0.009 0.058 0.002 

60k-79k income range 2.715* 0.109 2.954* 0.105 2.747* 0.088 

80k-99k income range 0.373 0.015 0.029 0.001 0.235 0.008 

100k and above income range -1.963* -0.079 -2.121* -0.076 -2.277* -0.073 

Asian Households 1.020 0.041 1.980* 0.071 1.666* 0.053 

Multiracial Households -0.313 -0.013 -0.387 -0.014 0.172 0.006 

Native American Households -0.309 -0.013 -1.228 -0.044 -0.466 -0.015 

Pacific Islander Households -1.415 -0.060 -1.415 -0.053 -1.733* -0.057 

White Households -2.014* -0.081 -1.717* -0.061 -2.120* -0.068 

Mobile Homes -0.330 -0.013 -1.200 -0.043 -1.032 -0.033 

Single Family Homes -1.978* -0.080 -2.141* -0.077 -0.688 -0.022 

Presence of Insulation -1.027 -0.041 -0.573 -0.021 -0.962 -0.031 

Log Cooled SqFt -0.555 -0.022 -0.476 -0.017 0.590 0.019 

Number of rooms -0.867 -0.035 -1.081 -0.039 0.149 0.005 

Household Size -1.965* -0.079 -2.241* -0.080 -1.277 -0.041 

Bulbs on for 1-4hrs 0.482 0.019 0.148 0.005 0.497 0.016 

Log HDD -0.631 -0.026 -1.503 -0.054 -4.037* -0.130 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

For robustness, two alternative classification strategies are employed to ensure that the results are 

not driven by a single threshold definition or short-term climatic variation. First, households are 

reclassified as treated if their 2020 Cooling Degree Days (𝐶𝐷𝐷𝑖,2020) exceed the 75th percentile 

of CDD within their respective climate zone (𝐶𝐷𝐷𝑧,2020
(75)

). This alternative specification identifies 

households experiencing particularly intense cooling needs relative to local climatic norms. 

Formally, this is defined as: 
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𝐴𝑖𝑧
(75)

= {
1,  𝑖𝑓 𝐶𝐷𝐷𝑖,2020 > 𝐶𝐷𝐷𝑧,2020

(75)

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
 

Second, the treatment definition is repeated using long-run climate exposure based on 30-year 

average Cooling Degree Days (𝐶𝐷𝐷𝑖,30𝑦𝑟). This long-term specification captures persistent 

climatic exposure and validates the stability of the results under extended temperature trends rather 

than annual anomalies. In this case, a household is treated if its 30-year average CDD exceeds the 

mean 30-year CDD of its climate zone (𝐶̅𝐷𝐷𝑧,30𝑦𝑟). 

 

𝐴𝑖𝑧
(30)

= {
1,  𝑖𝑓 𝐶𝐷𝐷𝑖,30𝑦𝑟 > 𝐶̅𝐷𝐷𝑧,30𝑦𝑟, 

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
 

 

The treatment indicator 𝐴𝑖𝑧 thus captures whether household i in climate zone z experiences high 

cooling demand, normalized to local climatic conditions. This variable form the basis for the causal 

analysis that follows. In subsequent sections, the empirical models quantify how exposure to high 

cooling demand causally affects household electricity consumption. Section 3.7 develops this 

framework formally by estimating both conditional mean and distributional treatment effects using 

causal machine learning methods. 

 

3.6.2 Conditional average treatment effects specification 

The potential outcomes framework defines electricity consumption for each household under two 

scenarios: 𝑌𝑖(1) represents the electricity use if household i experiences high cooling energy 

demand (treated), while 𝑌𝑖(0) represents the electricity use if household i does not experience high 

cooling energy demand (control). The CATE (𝜏) is defined as the expected difference in electricity 

use under these two scenarios, conditional on household characteristics (𝑋𝑖). Formally, CATE is 

expressed as: 

 

𝐶𝐴𝑇𝐸(𝑋𝑖) = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]         (3.1) 

 

where, 𝑋𝑖 includes household-level covariates such as climate zone, air conditioning type, 

household income, cooled sqft, household race, etc. These covariates help to capture the 

heterogeneity in treatment effects across different subpopulations. 

 

The observed outcome is defined as: 
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𝑌𝑖 = 𝐴𝑖𝑌𝑖(1) + (1 − 𝐴𝑖)𝑌𝑖(0)          (3.2) 

 

Under the assumptions of unconfoundedness (𝑌(𝑎) ⊥ 𝐴|𝑋) and overlap (0 < 𝑃(𝐴 = 1|𝑋) < 1), 

treatment effects can be estimated using observed data. 

 

To estimate CATE, this study implements four meta-learners: the S-learner, T-learner, X-learner, 

and DR-learner, following the methodology outlined in Künzel et al. (2019). The S-learner treats 

the treatment indicator, 𝐴𝑖, as a standard feature in the regression model, estimating a single 

response function: 

𝜏(𝑋𝑖 , 𝐴𝑖) = Ε[𝑌𝑖|𝑋𝑖 , 𝐴𝑖]                      (3.3) 

using a supervised learning model trained on the entire dataset. The estimated function, 

𝜏̂(𝑋𝑖 , 𝐴𝑖), is then used to compute the CATE as: 

 

𝜏𝑠̂(𝑋𝑖) =  𝜏̂(𝑋𝑖 , 1) − 𝜏̂(𝑋𝑖 , 0)            (3.4) 

 

This approach is computationally efficient, as it fits only one model, but it assumes the same 

functional form for both treated and control groups, which may be restrictive in some cases. 

The T-learner takes a two-step approach, estimating separate models for the treated and control 

groups. First, the control response function is estimated as: 

𝜏0(𝑋𝑖) = Ε[𝑌𝑖(0)|𝑋𝑖]                       (3.5) 

using a supervised learning model trained only on the control group (𝐴𝑖 = 0). Similarly, 

the treatment response function is estimated as: 

𝜏1(𝑋𝑖) = Ε[𝑌𝑖(1)|𝑋𝑖]                      (3.6) 

using another supervised learning model trained only on the treated group (𝐴𝑖 = 1). The 

CATE estimate from the T-learner is then: 

𝜏𝑇̂(𝑋𝑖) =  𝜏1̂(𝑋𝑖) − 𝜏0̂(𝑋𝑖)                                  (3.7) 
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This method allows for different functional forms in the treated and control groups, making it more 

flexible than the S-learner. However, when the sample sizes for one group are significantly smaller, 

model estimates can suffer from high variance. 

The X-learner extends the T-learner by leveraging imputed treatment effects to improve 

estimation, especially when the treatment and control groups are highly unbalanced. The X-learner 

follows three main steps, first estimate the response functions using equation 3.3. For the treated 

group (𝐴𝑖 = 1) and control group (𝐴𝑖 = 0), impute the counterfactual control and treated outcome, 

respectively: 

𝐷1̃ = 𝑌𝑖(1) − 𝜏0̂(𝑋𝑖)                                       (3.8) 

𝐷0̃ = 𝜏1̂(𝑋𝑖) − 𝑌𝑖(0)                                       (3.9) 

CATE is estimated using a weighted average: 

𝜏𝑥̂(𝑋𝑖) = 𝑔(𝑋𝑖)𝜏0̂(𝑋𝑖) + (1 − 𝑔(𝑋𝑖))𝜏1̂(𝑋𝑖)                 (3.10) 

 

where 𝑔(𝑋𝑖) is the weighting function, typically chosen as: 

 

𝑔(𝑋𝑖) =
𝑛0

𝑛0 + 𝑛1
 

The DR Learner combines propensity score modeling and outcome regression to reduce bias in 

CATE estimation. It is particularly useful in observational settings where treatment assignment 

may depend on observed covariates. It first estimates the propensity score: 

𝑒(𝑋𝑖) = 𝑃(𝐴𝑖 = 1|𝑋𝑖)          

using a classification model. Then, separate outcome models for treated and control groups 

are fitted: 

𝜏0̂(𝑋𝑖) = Ε[𝑌𝑖(0)|𝑋𝑖], 𝜏1̂(𝑋𝑖) = Ε[𝑌𝑖(1)|𝑋𝑖]    

Using these estimates, the pseudo-outcome is obtained as: 
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𝐷𝑖̃ = 𝐴𝑖 (
𝑌𝑖 − 𝜏0̂(𝑋𝑖)

𝑒(𝑋𝑖)
) + (1 − 𝐴𝑖) (

𝜏1̂(𝑋𝑖) − 𝑌𝑖

1 − 𝑒(𝑋𝑖)
)             (3.11) 

The pseudo-outcome 𝐷𝑖̃ is then used as the response variable in a regression model to estimate 

CATE. 

𝜏𝐷𝑅̂(𝑋𝑖) = 𝐸[𝐷𝑖̃ | 𝑋𝑖]              

3.6.3 Conditional distributional treatment effects specification 

Extending the same household-level treatment indicator 𝐴𝑖 defined in Section 3.4, the analysis 

adopts a distributional perspective to capture how high cooling demand affects the entire 

conditional distribution of electricity consumption. Building on Kallus and Oprescu (2023), the 

CDTE framework extends beyond mean treatment effects to quantify differences in specific 

statistics (e.g., quantiles, super-quantiles) of the conditional distributions of electricity use under 

treatment (𝐹𝑌(1)|𝑋) and control (𝐹𝑌(0)|𝑋) conditions. The CDTE is formally expressed as: 

 

𝐶𝐷𝑇𝐸(𝑋) = ℵ∗(𝐹𝑌(1)|𝑋) − ℵ∗(𝐹𝑌(0)|𝑋)         (3.12) 

 

where ℵ∗(𝐹) represents a statistic derived from a moment condition: 

 

𝐸[𝜚(𝑌, ℵ, ℎ)] = 0                    

 

This study employs two key CDTE measures to assess the impact of cooling energy demand on 

electricity use. The first measure is the Conditional Quantile Treatment Effect (CQTE), which 

captures the treatment effect at specific quantiles of the electricity use distribution. It is defined as: 

 

𝐶𝑄𝑇𝐸(𝑋; 𝜏) = 𝑞(𝐹𝑌(1)|𝑋; 𝜏) − 𝑞(𝐹𝑌(0)|𝑋;𝜏)          (3.13) 

 

where 𝑞(𝐹; 𝜏) represents the quantile at level 𝜏. This measure provides insights into how 

the treatment affects households at different points in the outcome distribution, such as 

those at the median or in the upper or lower tails. 
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The second measure is the Conditional Super-Quantile Treatment Effect (CSQTE), which extends 

the analysis by capturing the average outcomes beyond a specified quantile, focusing on tail risks. 

Unlike CQTEs, which focus on specific thresholds, CSQTEs provide a broader view of the risk 

profile by considering the average effects in the extreme tail of the distribution. It is expressed as: 

 

𝐶𝑆𝑄𝑇𝐸(𝑋; 𝜏) = 𝜇(𝐹𝑌(1)|𝑋; 𝜏) − 𝜇(𝐹𝑌(0)|𝑋;𝜏)         (3.14) 

 

where 𝜇(𝐹; 𝜏) represents the expected value of outcomes exceeding the 𝜏-quantile.  

 

To estimate CDTEs, the study adopts the pseudo-outcome regression approach introduced by 

Kallus and Oprescu (2023). This method corrects for potential bias in naive plug-in estimators and 

ensures robust CDTE estimation. The pseudo-outcome for CDTE learning is defined as: 

 

𝜓(𝑍; 𝑒, ℵ, ℎ) = ℵ1(𝑋) − ℵ0(𝑋) −
𝐴 − 𝑒(𝑋)

𝑒(𝑋)(1 − 𝑒(𝑋))
𝜚(𝑌, ℵ𝐴(𝑋), ℎ𝐴(𝑋))         (3.15) 

 

where 𝑒(𝑋) = 𝑃(𝐴 = 1|𝑋), is the propensity score; ℵ𝐴(𝑋) and ℎ𝐴(𝑋) are nuisance 

functions estimated separately for treated (𝐴 = 1) and control (𝐴 = 0) groups; 𝜚(𝑌, ℵ, ℎ) 

is the moment condition linking observed outcomes and the estimated statistics. 

 

The pseudo-outcome satisfies equation 17, ensuring consistency when regressed on X. 

 

𝐸[𝜓(𝑍; 𝑒, ℵ, ℎ)|𝑋] = 𝐶𝐷𝑇𝐸(𝑋)                           (3.16) 

 

For CQTEs, the conditional quantile function is estimated by solving: 

 

𝐸[𝜚(𝑌, ℵ𝐴(𝑋))|𝑋, 𝐴 = 𝑎] = 0                           

 

For CSQTEs, the super-quantile is estimated in two steps. First, the conditional quantile 𝑞𝑎(𝑋; 𝜏) 

is estimated for each treatment group. Then, the expected value of outcomes exceeding the quantile 

is calculated. This process can be implemented by splitting the training data, estimating the 

quantile on one subset, and computing tail averages on the other.  

 

𝜇𝑎(𝑋; 𝜏) = 𝐸[(1 − 𝜏)−1𝑌𝐼[𝑌 ≥ 𝑞𝑎(𝑋; 𝜏)] | 𝑋, 𝐴 = 𝑎]                            (3.17) 
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For CQTEs, the reciprocal of the density at the conditional quantile is required: 

ℎ𝐴(𝑋) =
1

𝑓𝑌|𝑋,𝐴=𝑎(𝑞𝑎(𝑋; 𝜏))
                                              (3.18) 

 

where 𝑓𝑌|𝑋,𝐴=𝑎 is the density of Y given X and 𝐴 = 𝑎.  

 

3.6.4 Linear projections of CATE, CQTE, and CSQTE estimates 

After computing CATE, CQTE, and CSQTE estimates, this study examines treatment effect 

heterogeneity by projecting the estimated values from each estimator onto household and regional 

covariates. The estimated coefficients 𝛽𝑗  capture the heterogeneous treatment effects associated 

with each covariate. The projection is performed separately for each group to identify the 

characteristics most strongly associated with variation in treatment effects across the different 

estimators. This separate-group projection strategy is adopted to minimize multicollinearity 

between categorical variables and to enhance interpretability by isolating the contribution of each 

group to observed heterogeneity. The empirical projection is defined as: 

 

𝜏𝑖̂ = 𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗 + 𝜀𝑖

𝑝

𝑗=1

                    (3.19) 

where 𝜏𝑖̂ denote a fitted, unit-specific treatment-effect estimate from any of the three 

estimators (CATE, CQTE at a fixed q, or CSQTE at a fixed q), 𝑋𝑖𝑗 are indicator variables 

drawn from one categorical group at a time (household air-conditioning types, race, income 

group, or household building type), and 𝜀𝑖 is the error term. 

Equation (19) serves as the sample analogue of the population best linear projection established in 

the CDTE framework: 

 

𝛽∗ = 𝑎𝑟𝑔
𝛽𝜖𝑅𝑝

𝑚𝑖𝑛 || 𝐶𝐷𝑇𝐸 − 𝜙(𝑋)𝑇𝛽 ||                 (3.20) 

where 𝜏(𝑋) represents the true conditional effect (CATE, 𝐶𝑄𝑇𝐸𝑞, or 𝐶𝑆𝑄𝑇𝐸𝑞) and 𝜙(𝑋) 

denotes the projected covariates. Under regularity and cross-fitting conditions, the 

coefficient vector 𝛽̂ converges to 𝛽∗ and satisfies: 
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√𝑛(𝛽̂ − 𝛽∗)
𝑑
→ 𝑁(0, Σ)                             (3.21) 

 

where Σ is the asymptotic covariance matrix of the regression of the pseudo-outcome on 

𝜙(𝑋). HC3-robust standard errors are reported in empirical applications. Since the 

dependent variable in the original model is in logarithmic form, coefficient magnitudes can 

be interpreted as semi-elasticities, and percentage effects can be obtained via 

(𝑒𝑥𝑝(𝜏̂) − 1)100  if desired. 

 

3.6.5 Estimation approach 

The estimation of CDTEs is carried out using the CDTE learner developed by Kallus and Oprescu 

(2023), which employs cross-fitting to ensure independence between nuisance function estimation 

and pseudo-outcome construction. First, the data is divided into K folds. For each fold k, nuisance 

functions including the propensity score, 𝑒(𝑋), conditional quantiles ℵ𝐴(𝑋), and density estimates 

ℎ𝐴(𝑋) are estimated using data from all folds except the k-th fold. This approach ensures that the 

estimation of nuisance functions is performed independently of the samples used for final pseudo-

outcome calculations, maintaining an orthogonal structure to the treatment effect estimation. These 

estimates are then used to construct a pseudo-outcome for each observation. After computing the 

pseudo-outcomes across all folds, the final step involves estimating the conditional expectation of 

the pseudo-outcomes given the covariates. This step aggregates the information in the pseudo-

outcomes to estimate the CDTE, which captures how the treatment effect varies across different 

levels of the covariates.  

 

For the estimation of CQTE, the process involves constructing models for quantile treatment 

effects at specific quantiles, utilizing a combination of Random Forest Quantile Regressors, 

conditional density models, and a linear regression learner for final estimation. The Random Forest 

Quantile Regressor is employed to estimate conditional quantiles of the outcome distribution given 

covariates (X) and treatment (A), capturing the treatment effect at the 25th and 75th percentiles of 

the outcome distribution (Y). Additionally, a conditional density model, represented by a Random 

Forest Regressor, is used to approximate the conditional density function of the covariates, and a 

kernel-based function is included to model fine-grained dependencies. These components feed into 

the final CQTE estimation model, represented by a linear regression with robust covariance 
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estimation. The pseudo-outcomes are computed using these models and then aggregated to 

estimate the CQTE. 

 

For the estimation of CSQTE, two distinct models were utilized, the Random Forest Quantile 

Regressor and the Kernel Superquantile Regressor. The Random Forest Quantile Regressor 

estimates conditional quantiles of the outcome distribution given covariates (X), capturing 

treatment effects at specific percentiles of the outcome distribution. In contrast, the Kernel 

Superquantile Regressor extends this analysis to estimate conditional super quantiles, reflecting 

expected outcome values in the tail beyond the specified quantile threshold. This distinction is 

critical for assessing tail behavior, such as high risks or rewards, and is key to understanding 

distributional effects. 

 

For CATE estimation, this study employs multiple meta-learners, including the S-learner, T-

learner, X-learner, and DR Learner, leveraging Gradient Boosting Regressors and Random Forest 

Classifiers to estimate heterogeneous treatment effects. The T-learner estimates separate outcome 

models for the treated and control groups, capturing differential responses by applying Gradient 

Boosting Regression to both groups before computing the treatment effect as the difference in 

predicted outcomes. The S-learner incorporates the treatment indicator as a feature in a single 

Gradient Boosting Regressor, estimating potential outcomes in a unified model. The X-learner 

extends the T-learner by imputing treatment effects for each group and refining estimates with a 

second-stage model, incorporating a Random Forest Classifier for propensity score estimation. 

Finally, the DR Learner combines outcome modeling with propensity score weighting, where a 

Gradient Boosting Regressor is used for both the outcome and pseudo-treatment models, while a 

Random Forest Classifier estimates the propensity score, ensuring robustness against 

misspecification in either component. These approaches effectively capture non-linear 

relationships and high-dimensional interactions among covariates, enhancing the flexibility and 

accuracy of CATE estimation. 

 

The final stage of the estimation process involved projecting the estimated effects onto selected 

covariates using OLS. This step provides interpretable coefficients for CATE, CQTE, and CSQTE 

by regressing the estimated effects onto a subset of key categorical variables. Specifically, the 

projection included variables such as household air conditioning type (e.g., central air 
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conditioning, unitary air conditioning, evaporative coolers), household race (e.g., Asian, Black, 

Multiracial, Native American, Pacific Islander, White), income group (e.g., below $20,000; 

$20,000–$39,000; $40,000–$59,000; $60,000–$79,000; $80,000–$99,000; and $100,000 or 

more), and household building type (e.g., mobile homes, single-family homes, apartment homes). 

All estimation procedures in this study are implemented in Python, with CATE learners following 

the modules of Künzel et al. (2019) and CDTE estimations (CQTE and CSQTE) based on the 

modules developed by Kallus and Oprescu (2023). 

 

4.0 Empirical Findings 

4.1 Electricity consumption response to cooling demand 

Figure 3 presents the treatment effect estimates for each estimator across the full sample, including 

four CATE learners (T, S, X, and DR Learners), and the CQTE and CSQTE estimates at the 25th 

and 75th percentiles. For the CATE estimates, the median values are approximately 0.28–0.29 

across all learners. This implies that households experiencing higher-than-average cooling demand 

consume approximately 32.2% to 33.6% more electricity compared to their counterparts within 

the same climate zone. The CQTE estimates show heterogeneous effect across the outcome 

distribution. At the 25th percentile, the median CQTE is 0.20, suggesting a 22.1% increase in 

consumption among lower-consuming households. At the 75th percentile, the effect is slightly 

lower, with a median of 0.17, implying an 18.5% increase. The pattern remains consistent for the 

CSQTE (tail expectation) estimates but shows a slightly flatter gradient. The median CSQTE is 

0.21 at the 25th percentile and 0.14 at the 75th percentile, implying electricity consumption 

increases of approximately 23.4% and 15.0%, respectively. These distributional estimates 

underscore how cooling demand disproportionately burdens more vulnerable households. 
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Figure 3: Distribution of estimated effects under increased cooling demand 

 
 

4.2 Heterogeneous effects by socioeconomic and housing characteristics 

Table 6 presents results from an OLS projection of CATE, CQTE and CSQTE on air conditioning 

system types, with unitary AC types serving as the reference group. Based on the CATE models, 

total effects for central AC users is about 0.32 which translates to approximately 37.7% higher 

electricity consumption relative to unitary AC households of about 32%. At the 25th percentile, 

the CQTE estimate for central AC users is 0.337, corresponding to a 40.1% increase, while at the 

75th percentile the effect drops to 34.3%. The CSQTE estimates show a similar pattern: 

households with central AC experience a 31.6% increase at the 25th percentile and 19.6% at the 

75th percentile. In comparison, households using evaporative coolers face even greater increases 

under CATE models, with total effects ranging from approximately 47.6% to 53.6% higher 

electricity consumption compared to unitary AC users. While the CQTE effects for evaporative 

coolers are lower (25.6% and 30.6 at 25th and 75th percentile, respectively), the CSQTE estimates 

are substantial: households see a 25.9% increase at the 25th percentile and a 37.7% increase at the 

75th percentile.  

 

The result shows a nuanced pattern emerges across models: in the CATE projections, households 

using evaporative coolers consistently show the highest average increase in electricity 

consumption, followed by those with central AC and unitary AC systems. In contrast, the CQTE 

projection indicate that central AC households exhibit stronger responsiveness to cooling demand 
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than evaporative cooler households at both lower and upper percentiles. However, this pattern 

reverses in the CSQTE, where households with evaporative coolers face a steeper increase in 

electricity use at higher levels of consumption compared to those with central AC systems. 

 

Table 6: OLS projection of CATE, CQTE and CSQTE on air condition type 
 

CATE 

(S 

Learner) 

CATE 

(T 

Learner) 

CATE 

(X 

Learner) 

CATE 

(DR 

Learner) 

CQTE 

(25) 

CQTE 

(75) 

CSQTE 

(25) 

CSQTE 

(75) 

Central AC 

Type 

0.036*** 

(0.005) 

0.041*** 

(0.006) 

0.042*** 

(0.005) 

0.044*** 

(0.006) 

0.048*** 

(0.011) 

-0.087*** 

(0.012) 

0.113*** 

(0.003) 

-0.067*** 

(0.003) 

Evaporative 

coolers  

0.106*** 

(0.012) 

0.126*** 

(0.015) 

0.121*** 

(0.014) 

0.154*** 

(0.019) 

-0.061** 

(0.040) 

-0.115** 

(0.049) 

0.068*** 

(0.008) 

0.074*** 

(0.009) 

Constant 0.283*** 

(0.004) 

0.279*** 

(0.005) 

0.278*** 

(0.005) 

0.275*** 

(0.006) 

0.289*** 

(0.010) 

0.382*** 

(0.010) 

0.162*** 

(0.003) 

0.246*** 

(0.003) 

R2 0.009 0.008 0.010 0.011 0.002 0.003 0.053 0.057 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

Relative to households earning below $20,000 which experience approximately a 35% increase in 

electricity consumption under elevated cooling demand, the OLS projections show (Table 7) a 

non-monotonic pattern of heterogeneity across income groups. For the CATE outcome, the total 

effect for households earning $20,000–$39,000 is approximately 41%, 39% for those earning 

$40,000–$59,000, and a peak of 43% for the $60,000–$79,000 group. In contrast, the effect 

declines to around 27% for the $80,000–$99,000 group, and returns to 37% for those earning 

$100,000 and above. This suggests that while all income groups experience substantial increases 

in consumption under high cooling demand, the mid-income households, particularly those 

between $60,000 and $79,000, exhibit the highest responsiveness. 

 

Additional result from the CQTE outcome reinforce this pattern. At the 25th percentile of the 

consumption distribution, households earning $40,000–$59,000 experience the largest increase, 

approximately 67%, compared to 38% for the lowest income group. Meanwhile, at the 75th 

percentile, the $60,000–$99,000 income brackets show the highest increases, each around 55%, 

while the lowest and highest income groups experience lower impacts—32% for $20,000–$39,000 

and 29% for $100,000 and above. CSQTE outcome, which capture tail-averaged effects, are 

relatively flatter across groups. In the lower tail, effects range between 23%–31%, while in the 

upper tail, they cluster between 20%–24%. These results indicate that while the burden of 

increased cooling demand is broadly shared, middle-income households bear disproportionately 
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higher effects in terms of average electricity consumption. However, at the lower and upper ends 

of the consumption distribution, the effects appear more diffuse, with different income segments 

exhibiting higher responsiveness depending on the percentile or tail considered. 

 

Table 7: OLS projection of CATE, CQTE and CSQTE on household income 
 

CATE (S 

Learner) 

CATE (T 

Learner) 

CATE (X 

Learner) 

CATE (DR 

Learner) 

CQTE 

(25) 

CQTE 

(75) 

CSQTE 

(25) 

CSQTE 

(75) 

20k-39k 

income range 

0.043*** 

(0.006) 

0.040*** 

(0.007) 

0.040*** 

(0.007) 

0.046*** 

(0.007) 

0.195*** 

(0.019) 

0.100*** 

(0.021) 

0.060*** 

(0.006) 

0.013** 

(0.005) 

40k-59k 

income range 

0.027*** 

(0.007) 

0.023*** 

(0.007) 

0.023*** 

(0.007) 

0.021*** 

(0.008) 

0.385*** 

(0.019) 

0.176*** 

(0.021) 

0.036*** 

(0.007) 

0.036*** 

(0.005) 

60k-79k 

income range 

0.057*** 

(0.007) 

0.051*** 

(0.008) 

0.050*** 

(0.008) 

0.051*** 

(0.009) 

0.206*** 

(0.021) 

0.257*** 

(0.023) 

0.069*** 

(0.007) 

0.019*** 

(0.005) 

80k-99k 

income range 

-

0.066*** 

(0.007) 

-0.073*** 

(0.008) 

-0.074*** 

(0.007) 

-0.069*** 

(0.008) 

0.187*** 

(0.019) 

0.261*** 

(0.021) 

0.040*** 

(0.007) 

0.002 

(0.005) 

100k and 

above income 

range 

0.011 

(0.006) 

0.003 

(0.006) 

0.001 

(0.006) 

0.011 

(0.007) 

0.181*** 

(0.017) 

0.072*** 

(0.018) 

0.061*** 

(0.006) 

0.011*** 

(0.004) 

Constant 0.301*** 

(0.005) 

0.307*** 

(0.005) 

0.308*** 

(0.005) 

0.303*** 

(0.006) 

0.126*** 

(0.014) 

0.180*** 

(0.016) 

0.204*** 

(0.005) 

0.182*** 

(0.004) 

R2 0.029 0.024 0.027 0.022 0.031 0.019 0.011 0.006 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

When projecting estimated effects on household race (Table 8), using Black households as the 

reference group, a clear pattern emerges in how cooling demand impacts electricity consumption. 

In CATE projection, Asian households have total effects that are nearly identical to Black 

households—roughly 39–41% increases, with differences statistically insignificant. In contrast, 

White households consistently show lower responsiveness, around 36%. For the CQTE regression, 

at the 25th percentile, Asian households show a 65% increase in electricity consumption under 

high cooling demand, nearly double the 34% increase for White households. At the 75th percentile, 

Asians still exhibit higher responsiveness (38%), though both Asians and Whites remain below 

the Black baseline (33%). The tail-expectation regression models reinforce these disparities: for 

the lower tail, Asians have a 38% response versus Whites at 28%, and in the upper tail, Asians 

remain higher at 25%, relative to 22% for Whites.  

 

Compared to Black households, Multiracial households do not show statistically significant 

differences in CATE projection but exhibit a significant increase in household electricity 

consumption due to cooling demand in the CSQTE projection—approximately 41.6% at the 25th 
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percentile. Native American households experience significantly higher increases in electricity use 

under CATE projection (up to 57.8% based on the S Learner), and despite showing notably lower 

effects in the CQTE projections, they display substantial increases in consumption in the CSQTE 

estimates—about 43.9% and 30.7% at the 25th and 75th percentiles, respectively. Pacific Islander 

households exhibit the largest increases in electricity consumption due to cooling demand across 

most models, with estimates as high as 70.1% (X Learner) and CSQTE effects of 58.7% at the 

25th percentile, indicating a strong sensitivity to cooling needs relative to Black households. These 

findings consistently indicate that while Black households face a substantial burden from increased 

cooling needs, other minority groups—especially Native American and Pacific Islander 

households—tend to bear even greater increases in electricity consumption, particularly in the tails 

of the distribution. 

 

Table 8: OLS projection result of CATE, CQTE and CSQTE on household race 
 

CATE (S 

Learner) 

CATE (T 

Learner) 

CATE (X 

Learner) 

CATE 

(DR 

Learner) 

CQTE 

(25) 

CQTE 

(75) 

CSQTE 

(25) 

CSQTE 

(75) 

Asian 

Households 

0.009 

(0.020) 

0.010 

(0.024) 

-0.007 

(0.022) 

-0.007 

(0.025) 

0.092*** 

(0.040) 

0.035*** 

(0.043) 

0.062*** 

(0.015) 

0.051*** 

(0.009) 

Multiracial 

Households 

0.027 

(0.021) 

0.005 

(0.025) 

0.010 

(0.024) 

-0.008 

(0.027) 

0.053 

(0.049) 

0.192*** 

(0.056) 

0.091*** 

(0.015) 

0.048*** 

(0.010) 

Native 

American 

Households 

0.122*** 

(0.033) 

0.079 

(0.049) 

0.089** 

(0.044) 

0.044 

(0.063) 

-0.497*** 

(0.080) 

-0.886*** 

(0.085) 

0.107*** 

(0.022) 

0.094*** 

(0.018) 

Pacific 

Islander 

Households 

0.136** 

(0.099) 

0.180*** 

(0.120) 

0.104** 

(0.122) 

-0.004 

(0.150) 

0.155*** 

(0.202) 

0.165* 

(0.235) 

0.205*** 

(0.067) 

0.062 

(0.043) 

White 

Households 

-0.026*** 

(0.008) 

-0.045*** 

(0.009) 

-0.044*** 

(0.008) 

-0.041*** 

(0.009) 

-0.117*** 

(0.017) 

0.006 

(0.019) 

-0.012 

(0.007) 

0.021*** 

(0.004) 

Constant 0.334*** 

(0.007) 

0.351*** 

(0.009) 

0.351*** 

(0.008) 

0.349*** 

(0.009) 

0.407*** 

(0.016) 

0.293*** 

(0.018) 

0.257*** 

(0.006) 

0.174*** 

(0.004) 

R2 0.009 0.012 0.011 0.004 0.063 0.032 0.015 0.006 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

Table 9 show that, compared to apartment homes, households in Mobile Homes experience 

approximately 43.6% to 46.1% higher electricity consumption due to increased cooling demand, 

based on the CATE projections. Households in Single Family Homes also exhibit elevated 

consumption, though to a slightly lesser extent (38.5%) but still higher than apartment households. 

In the CQTE regression, Single Family Homes show around 44.7% higher consumption at the 25th 

percentile and 42.9% at the 75th percentile, indicating strong responsiveness to cooling demand 
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across the distribution. By contrast, Mobile Homes display a slight increase of roughly 19.9% at 

the 25th percentile and 17.4% at the 75th percentile, though these effects are not statistically 

significant. For the CSQTE projections, Single Family Homes show about a 31.3% increase in 

electricity use at the lower tail and 22.1% at the upper tail, while Mobile Homes reflect 

approximately 22% at the lower tail and no significant difference at the upper tail.  

 

These results indicate that while the burden of increased cooling demand is broadly shared across 

housing types, households in single-family homes bear disproportionately higher effects in terms 

of average electricity consumption compared to apartment and mobile homes. However, at the 

lower and upper percentile of the consumption distribution, the effects appear more diffuse, with 

single-family households showing stronger responsiveness overall, while mobile-home 

households exhibit marginal or statistically insignificant effects depending on the percentile or tail 

considered. 

 

Table 9: OLS projection of CATE, CQTE and CSQTE on building types 
 

CATE (S 

Learner) 

CATE (T 

Learner) 

CATE (X 

Learner) 

CATE 

(DR 

Learner) 

CQTE 

(25) 

CQTE 

(75) 

CSQTE 

(25) 

CSQTE 

(75) 

Mobile 

Homes 

0.121*** 

(0.009) 

0.141*** 

(0.011) 

0.136*** 

(0.010) 

0.131*** 

(0.012) 

0.023 

(0.025) 

0.009 

(0.028) 

0.018** 

(0.008) 

-0.001 

(0.007) 

Single Family 

Homes 

0.085*** 

(0.006) 

0.091*** 

(0.007) 

0.083*** 

(0.006) 

0.084*** 

(0.007) 

0.211*** 

(0.014) 

0.205*** 

(0.015) 

0.093*** 

(0.005) 

0.012*** 

(0.003) 

Constant 0.241*** 

(0.006) 

0.236*** 

(0.006) 

0.243*** 

(0.006) 

0.241*** 

(0.007) 

0.159*** 

(0.013) 

0.152*** 

(0.013) 

0.179*** 

(0.005) 

0.187*** 

(0.003) 

R2 0.026 0.025 0.024 0.020 0.023 0.018 0.037 0.001 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

4.3 Robustness analysis using alternative cooling degree day thresholds 

Figures 4 and 5 provide robustness checks of Figure 3.3 findings. Figure 3.4 redefines treatment 

as exposure to extreme heat, where 2020 CDD exceeds the 75th percentile within each climate 

zone. Under this specification, CATE estimates across learners range from 0.13 to 0.20, implying 

consumption increases of 13.9% to 22.1% for those facing unusually high cooling needs. CQTE 

medians remain elevated, at 0.19 (≈ 20.9%) for the 25th percentile and 0.16 (≈ 17.4%) for the 75th, 

with CSQTE estimates reinforcing this pattern at 22.1% and 17.4%, respectively. These results 

confirm that even households with moderate or low baseline electricity use are significantly 

impacted by intense heat exposure. 
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Figure 4: Robustness analysis – treatment effects under extreme cooling demand 

 
 

Figure 5 tests the long-term climatic robustness of the results by redefining treatment using 30-

year average CDD. Households are considered treated if their long-run average CDD exceeds the 

mean of their climate zone. CATE medians remain positive and stable (0.15–0.17), implying 

16.2% to 18.5% increases in electricity consumption among long-term heat-exposed households. 

CQTE results show even stronger effects among lower-consuming households, with a 25th 

percentile median of 0.23 (≈ 25.9% increase) compared to 0.21 (≈ 23.4%) at the 75th. CSQTE 

estimates also reinforce this distributional pattern, with the highest median effect of 0.26 (≈ 29.8%) 

occurring in the lower tail. Overall, this robustness check supports the main findings and 

demonstrates their stability under alternative treatment definitions. 
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Figure 5: Robustness analysis – treatment effects based on 30-year average CDD 

 
 

Under the alternative treatment definition based on the 75th percentile of CDD within each climate 

zone, the OLS projections of CATE, CQTE, and CSQTE (Table 10) reinforce the main findings, 

preserving the core patterns while amplifying certain distributional effects. In Panel A, central AC 

households continue to exhibit higher electricity consumption than the unitary AC baseline, with 

a notably stronger lower-tail response (approximately 28% at the 25th percentile), whereas 

evaporative cooler households remain distinctly upper-tail intensive, with increases of about 40% 

at the 75th percentile. In Panel B, the hump-shaped income gradient is maintained, with households 

earning $60k–$79k again displaying the largest responses, including CQTE effects at the 25th 

percentile exceeding 60%, while higher-income groups show reduced upper-tail effects. 

 

Panel C confirms pronounced racial heterogeneity: Black, Asian, Native American, and Pacific 

Islander households register particularly large tail responses, with upper-percentile effects often 

exceeding 45%, whereas White households exhibit more moderate and consistent increases. This 

reinforces the disproportionate electricity consumption burden on minority groups. In Panel D, 

housing type asymmetries persist, with mobile homes showing upper-tail increase (above 25% at 

the 75th percentile) and single-family homes concentrating higher consumption among lower-use 

households (31% at the 25th percentile) while recording a lower effect in the upper percentiles.  
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Table 10: Heterogeneous effects under 2020 CDD 75th percentile treatment threshold 
 

CATE (S 

Learner) 

CATE (T 

Learner) 

CATE (X 

Learner) 

CATE (DR 

Learner) 

CQTE (25) CQTE (75) CSQTE 

(25) 

CSQTE 

(75) 

Panel A: Air Conditioner Type 

Central AC 

Type 

-0.020*** 

(0.005) 

-0.014 

(0.010) 

0.052*** 

(0.007) 

0.041*** 

(0.009) 

-0.042*** 

(0.010) 

-0.120*** 

(0.008) 

0.086*** 

(0.004) 

-0.089*** 

(0.004) 

Evaporative 

coolers  

0.047*** 

(0.014) 

0.059** 

(0.026) 

0.048** 

(0.019) 

0.053** 

(0.023) 

-0.138*** 

(0.026) 

0.024 

(0.022) 

0.068*** 

(0.010) 

0.037*** 

(0.010) 

Constant 0.205*** 

(0.005) 

0.216*** 

(0.010) 

0.198*** 

(0.007) 

0.159*** 

(0.008) 

0.292*** 

(0.009) 

0.314*** 

(0.007) 

0.158*** 

(0.003) 

0.289*** 

(0.004) 

R2 0.003 0.002 0.005 0.002 0.002 0.017 0.023 0.074 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel B: Income Group 

$20k–$39k 0.040*** 

(0.007) 

0.073*** 

(0.013) 

0.060*** 

(0.010) 

0.064*** 

(0.012) 

0.116*** 

(0.015) 

0.072*** 

(0.012) 

0.053*** 

(0.007) 

0.020*** 

(0.005) 

$40k–$59k 0.032*** 

(0.007) 

0.006 

(0.013) 

0.012 

(0.010) 

0.027** 

(0.012) 

0.105*** 

(0.015) 

0.100*** 

(0.012) 

0.030*** 

(0.007) 

0.017*** 

(0.005) 

$60k–$79k 0.070*** 

(0.008) 

0.092*** 

(0.015) 

0.088*** 

(0.011) 

0.081*** 

(0.013) 

0.321*** 

(0.017) 

0.295*** 

(0.013) 

0.087*** 

(0.008) 

0.040*** 

(0.005) 

$80k–$99k 0.040*** 

(0.007) 

-0.002 

(0.014) 

0.006 

(0.010) 

0.010 

(0.012) 

0.020 

(0.016) 

0.002 

(0.013) 

0.029*** 

(0.008) 

0.005 

(0.005) 

$100k+ 0.040*** 

(0.006) 

0.034*** 

(0.012) 

0.030*** 

(0.009) 

0.037*** 

(0.011) 

0.062*** 

(0.014) 

0.057*** 

(0.011) 

0.027*** 

(0.007) 

-0.006 

(0.004) 

Constant 0.153*** 

(0.005) 

0.173*** 

(0.010) 

0.208*** 

(0.008) 

0.155*** 

(0.009) 

0.161*** 

(0.012) 

0.142*** 

(0.009) 

0.191*** 

(0.005) 

0.210*** 

(0.004) 

R² 0.006 0.007 0.009 0.005 0.034 0.046 0.011 0.010 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel C: Household Race 

Asian 0.056*** 

(0.016) 

0.153*** 

(0.029) 

0.086*** 

(0.022) 

0.093*** 

(0.025) 

0.373*** 

(0.035) 

0.279*** 

(0.028) 

0.017 

(0.017) 

0.060*** 

(0.009) 

Multiracial 0.082*** 

(0.018) 

0.118*** 

(0.031) 

0.124*** 

(0.024) 

0.112*** 

(0.028) 

0.002 

(0.035) 

-0.159*** 

(0.030) 

0.082*** 

(0.019) 

0.052*** 

(0.010) 

Native 

American 

0.083*** 

(0.027) 

0.166*** 

(0.048) 

0.154*** 

(0.038) 

0.069 

(0.038) 

0.001 

(0.060) 

0.216*** 

(0.052) 

0.119*** 

(0.027) 

0.098*** 

(0.016) 

Pacific 

Islander 

0.151 

(0.085) 

0.117 

(0.113) 

0.160 

(0.100) 

0.223 

(0.129) 

0.113*** 

(0.142) 

0.235*** 

(0.127) 

0.250*** 

(0.091) 

0.072* 

(0.039) 

White 0.037*** 

(0.006) 

0.044*** 

(0.013) 

0.041*** 

(0.009) 

0.037*** 

(0.011) 

0.049*** 

(0.013) 

0.073*** 

(0.011) 

0.038*** 

(0.007) 

0.042*** 

(0.004) 

Constant 0.155*** 

(0.006) 

0.160*** 

(0.012) 

0.198*** 

(0.008) 

0.154*** 

(0.010) 

0.197*** 

(0.013) 

0.150*** 

(0.011) 

0.191*** 

(0.007) 

0.180*** 

(0.003) 

R² 0.004 0.005 0.005 0.003 0.046 0.029 0.006 0.009 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel D: Housing Type 

Mobile Home 0.055*** 

(0.008) 

0.195*** 

(0.017) 

0.150*** 

(0.012) 

0.111*** 

(0.015) 

-0.145*** 

(0.020) 

0.032* 

(0.017) 

0.075*** 

(0.009) 

0.024*** 

(0.007) 

Single family 

Home 

0.090*** 

(0.005) 

0.107*** 

(0.010) 

0.086*** 

(0.008) 

0.090*** 

(0.009) 

0.085*** 

(0.012) 

-0.009 

(0.010) 

0.079*** 

(0.006) 

0.000 

(0.004) 

Constant 0.118*** 

(0.004) 

0.114*** 

(0.009) 

0.165*** 

(0.007) 

0.116*** 

(0.008) 

0.197*** 

(0.011) 

0.226*** 

(0.009) 

0.162*** 

(0.005) 

0.219*** 

(0.003) 

R² 0.023 0.014 0.015 0.010 0.014 0.001 0.018 0.001 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 
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When the treatment is redefined using 30-year average CDD, the OLS projection results (Table 

11) reinforce the baseline findings. By air conditioning type, central AC households continue to 

consume more than unitary AC users, with a pronounced lower-percentile response (34% at the 

25th-percentile CQTE) even as upper-tail CSQTE effects decline (21%). Evaporative coolers 

retain large distributional sensitivity, with a sizable lower-tail CQTE effect (36.8%). The income 

gradient remains hump-shaped, with middle-income households, particularly those earning $60k–

$79k, again exhibiting the strongest distributional response (68% at the 25th-percentile CQTE), 

while upper-income groups show more moderate increases, reinforcing that the highest marginal 

burden falls on the middle of the income distribution. 

 

Racial heterogeneity also persists and intensifies as minority groups, especially Blacks, Asian, 

Native American and Pacific Islander households bear substantial burden from increased cooling 

demand. For example, Asian households show the largest lower-tail effect (76% at the 25th-

percentile CQTE), while Native American and Multiracial households record strong upper-tail 

responses (60–65% at the 75th-percentile CQTE). Housing results also aligns with mobile homes 

exhibiting asymmetric responses where lower-tail consumption is above baseline (27.9% at the 

25th-percentile CQTE compared to 23.6% apartment homes) while single-family homes record 

38.9% increase at the 25th percentile and 31.6% at the 75th percentile and 31.1% at the 25th 

percentile and 21.0% at the 75th percentile for CSQTE model, confirming that single-family 

homes bear disproportionately higher effects in terms of household electricity consumption.  
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Table 11: Heterogeneous effects under 30-Year average CDD treatment threshold 
 

CATE (S 

Learner) 

CATE (T 

Learner) 

CATE (X 

Learner) 

CATE (DR 

Learner) 

CQTE (25) CQTE (75) CSQTE 

(25) 

CSQTE 

(75) 

Panel A: Air Conditioner Type 

Central AC 

Type 

0.040*** 

(0.004) 

0.053*** 

(0.008) 

0.036*** 

(0.006) 

0.066*** 

(0.007) 

0.068*** 

(0.008) 

-0.015** 

(0.007) 

0.123*** 

(0.003) 

-0.041*** 

(0.003) 

Evaporative 

coolers  

0.072*** 

(0.012) 

0.044** 

(0.022) 

0.048*** 

(0.016) 

0.093*** 

(0.026) 

0.063*** 

(0.026) 

-0.458*** 

(0.024) 

0.096*** 

(0.008) 

0.070*** 

(0.009) 

Constant 0.160*** 

(0.004) 

0.163*** 

(0.007) 

0.178*** 

(0.006) 

0.152*** 

(0.007) 

0.258*** 

(0.006) 

0.277*** 

(0.006) 

0.187*** 

(0.003) 

0.231*** 

(0.003) 

R2 0.006 0.004 0.003 0.007 0.047 0.039 0.082 0.030 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel B: Income Group 

$20k–$39k 0.026*** 

(0.007) 

0.039*** 

(0.012) 

0.034*** 

(0.009) 

0.030*** 

(0.011) 

0.091*** 

(0.013) 

0.053*** 

(0.012) 

0.038*** 

(0.006) 

0.018*** 

(0.004) 

$40k–$59k 0.047*** 

(0.007) 

0.052*** 

(0.012) 

0.049*** 

(0.009) 

0.049*** 

(0.011) 

0.179*** 

(0.013) 

0.120*** 

(0.012) 

0.042*** 

(0.006) 

0.044*** 

(0.005) 

$60k–$79k 0.030*** 

(0.008) 

0.030** 

(0.013) 

0.032*** 

(0.010) 

0.051*** 

(0.012) 

0.291*** 

(0.014) 

0.084*** 

(0.013) 

0.056*** 

(0.006) 

0.023*** 

(0.005) 

$80k–$99k 0.034*** 

(0.007) 

0.032*** 

(0.012) 

0.041*** 

(0.009) 

0.028** 

(0.011) 

0.072*** 

(0.013) 

0.087*** 

(0.012) 

0.037*** 

(0.006) 

0.013*** 

(0.005) 

$100k+ 0.043*** 

(0.006) 

0.053*** 

(0.011) 

0.053*** 

(0.008) 

0.042*** 

(0.009) 

0.057*** 

(0.011) 

0.031*** 

(0.011) 

0.041*** 

(0.005) 

0.017*** 

(0.004) 

Constant 0.160*** 

(0.005) 

0.166*** 

(0.009) 

0.169*** 

(0.007) 

0.170*** 

(0.008) 

0.223*** 

(0.010) 

0.195*** 

(0.009) 

0.248*** 

(0.004) 

0.182*** 

(0.004) 

R² 0.004 0.002 0.004 0.002 0.044 0.011 0.007 0.008 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel C: Household Race 

Asian 0.093*** 

(0.016) 

0.148*** 

(0.026) 

0.144*** 

(0.019) 

0.111*** 

(0.023) 

0.318*** 

(0.028) 

0.219*** 

(0.026) 

0.080*** 

(0.013) 

0.080*** 

(0.010) 

Multiracial 0.083*** 

(0.018) 

0.122*** 

(0.026) 

0.125*** 

(0.021) 

0.096*** 

(0.026) 

0.036 

(0.034) 

0.126*** 

(0.032) 

0.089*** 

(0.013) 

0.066*** 

(0.010) 

Native 

American 

0.087*** 

(0.027) 

0.108** 

(0.044) 

0.139*** 

(0.039) 

-0.040 

(0.050) 

-0.165*** 

(0.054) 

0.233*** 

(0.050) 

0.046** 

(0.021) 

0.099*** 

(0.018) 

Pacific 

Islander 

0.125 

(0.087) 

0.137 

(0.111) 

0.126 

(0.089) 

-0.072 

(0.134) 

0.086*** 

(0.144) 

0.136** 

(0.133) 

0.153** 

(0.062) 

0.082* 

(0.043) 

White -0.002 

(0.007) 

-0.005 

(0.011) 

0.007 

(0.008) 

-0.014 

(0.011) 

-0.018 

(0.012) 

0.061*** 

(0.011) 

0.008 

(0.006) 

0.035*** 

(0.004) 

Constant 0.189*** 

(0.007) 

0.201*** 

(0.011) 

0.193*** 

(0.008) 

0.212*** 

(0.011) 

0.330*** 

(0.011) 

0.189*** 

(0.010) 

0.274*** 

(0.006) 

0.166*** 

(0.004) 

R² 0.011 0.010 0.015 0.007 0.032 0.012 0.012 0.013 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Panel D: Housing Type 

Mobile Home 0.055*** 

(0.008) 

0.147*** 

(0.017) 

0.095*** 

(0.012) 

0.072*** 

(0.015) 

-0.034** 

(0.017) 

0.020 

(0.016) 

0.060*** 

(0.007) 

0.045*** 

(0.007) 

Single family 

Home 

0.036*** 

(0.005) 

0.051*** 

(0.009) 

0.025*** 

(0.007) 

0.021*** 

(0.008) 

0.106*** 

(0.009) 

0.147*** 

(0.009) 

0.054*** 

(0.004) 

0.030*** 

(0.003) 

Constant 0.162*** 

(0.005) 

0.158*** 

(0.008) 

0.184*** 

(0.006) 

0.185*** 

(0.008) 

0.246*** 

(0.009) 

0.138*** 

(0.008) 

0.241*** 

(0.004) 

0.176*** 

(0.003) 

R² 0.005 0.008 0.005 0.002 0.015 0.027 0.015 0.008 

N 13198 13198 13198 13198 13198 13198 13198 13198 

Standard errors in parentheses. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10. 
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5.0 Conclusion 

This study examined the heterogeneous causal effects of climate-driven cooling demand on 

household electricity consumption using 2020 Residential Energy Consumption Survey (RECS) 

data in a causal machine learning framework grounded in the potential outcomes approach. The 

analysis proceeds in three parts. First, CATE are estimated to identify how the causal impact of 

high versus low cooling demand varies across households with different characteristics. Second, 

CQTE and CSQTE are used to assess how treatment effects differ across the electricity 

consumption distribution, capturing heterogeneity among low- and high-consuming households. 

Third, the estimated treatment effects are projected onto key household attributes including income 

level, race or ethnicity, air conditioning type, and housing structure to determine which groups are 

most affected by rising cooling needs.  

 

The findings show that elevated cooling demand substantially increases household electricity 

consumption. CATE estimates indicate that households facing higher-than-average cooling needs 

use about 32–34% more electricity than peers within the same climate zone. CQTE and CSQTE 

results show this burden is uneven: lower-consuming households experience increases of 21–23%, 

compared to 15–19% for higher-consuming ones. Robustness checks confirm the stability of these 

effects under alternative definitions of heat exposure. When treatment is defined as CDD above 

the 75th percentile, electricity use rises by 13.9–22.1% on average and remains elevated across the 

distribution. Using 30-year average CDD as treatment yields similar results, with CATE effects of 

16–18.5% and CQTE/CSQTE effects up to 26–30% in the lower tail, underscoring the persistent 

and unequal impact of rising cooling demand on household energy use. 

 

Further disaggregation based on OLS projection by air conditioning system types show important 

differences in electricity consumption responses. Households with evaporative coolers 

consistently exhibit the highest average increases, with CATE projection suggesting up to 53.6% 

higher consumption relative to unitary AC users. Central AC users also show strong effects, 

averaging 37.7%. However, the CQTE results indicate greater responsiveness for central AC users 

at both the 25th and 75th percentiles compared to evaporative coolers. This pattern reverses under 

the CSQTE models, where evaporative coolers are associated with significantly larger increases, 

particularly at the upper tail (up to 37.7%).  
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Income-based heterogeneity uncovers a non-linear pattern in electricity consumption due to 

cooling demand. While all groups experience notable increases, middle-income households 

($60,000–$79,000) show the highest responsiveness in average consumption, with effects peaking 

at 43%. The CQTE model highlights the largest effects in the 25th percentile for middle-income 

households (up to 67%) and in the 75th percentile for those in the mid-to-upper brackets (around 

55%). The CSQTE estimates are more evenly distributed but still suggest slightly higher impacts 

among middle-income groups. These results indicate that while the burden of cooling demand is 

widespread, mid-income households disproportionately bear the highest average impact, though 

the tails of the distribution reflect more diffuse effects. 

 

Finally, projections by household race and housing type confirm additional heterogeneity. Relative 

to Black households, Asian households exhibit similar average consumption increases under 

CATE but significantly higher effects at the lower and upper quantiles (CQTE and CSQTE). In 

contrast, White households show lower responsiveness across most models. Native American and 

Pacific Islander households face the steepest increases, particularly in the distribution tails, with 

some effects exceeding 70%. Regarding housing, single-family homes consistently show higher 

responsiveness to cooling demand compared to apartments and mobile homes. While mobile 

homes exhibit large average increases under CATE (up to 46%), these effects are not statistically 

significant in the CQTE or CSQTE projections.  

 

The two robustness checks—redefining treatment as 2020 CDD above the climate-zone 75th 

percentile and using 30-year average CDD above the zone mean—confirm the baseline OLS 

projection results across the CATE, CQTE, and CSQTE specifications. In CATE, central AC 

households show persistently higher consumption, while CQTE show strong lower-tail responses 

(28%–34% at the 25th quantile) and CSQTE indicate flatter or declining upper tails. Evaporative 

coolers display more variable distributional effects, with CQTE capturing large impacts in either 

the upper or lower tail depending on the treatment definition, and CSQTE showing concentrated 

upper-tail burdens. The income gradient remains robustly hump-shaped, with the $60k–$79k 

group showing the largest effects—CQTE at the 25th quantile exceeds 60%—while higher-income 

households consistently exhibit smaller upper-tail responses in CQTE and CSQTE. Racial 

disparities persist across both specifications, with minority groups such as Black, Asian, Native 

American, and Pacific Islander households bearing substantial burden of electricity consumption 
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following increased cooling demand. Housing type patterns are also robust, with single-family 

households disproportionately more affected relative to apartments and mobile homes. 

 

The CQTE projection results align closely with the UQR interaction estimates, producing the 

similar responsiveness while adding causal quantile-specific effect. Both approaches show central 

AC households as more responsive than unitary AC users, but CQTE refines this by showing that 

the excess burden is concentrated in the lower tail, whereas evaporative coolers have smaller, more 

balanced effects across tails. The income gradient observed in UQR is also confirmed, with CQTE 

highlighting heavier upper-tail burdens for mid-to-upper income households and a pronounced 

lower-tail peak for $40k–$59k households, indicating a non-monotonic pattern. These patterns are 

reinforced by the CSQTE projections, which show that extreme consumption burdens follow 

similar subgroup hierarchies but are more evenly distributed across income groups, with certain 

technologies (e.g., evaporative coolers) and racial groups (e.g., Pacific Islanders, Native 

Americans) exhibiting the steepest tail responses. The CATE results further support these findings 

by confirming that the subgroups identified as most responsive in the quantile models—such as 

households with central AC or evaporative coolers, middle-income earners, and certain minority 

racial groups—also face the largest average heat-related electricity burdens across the full 

distribution. 

 

The findings from this study underscore that climate-driven cooling demand imposes significant 

and uneven burdens on household electricity use, with impacts varying by consumption level, 

technology type, income, race, and housing structure. This heterogeneity underscores that one-

size-fits-all energy efficiency or climate adaptation policies may fail to protect the most vulnerable 

subgroups. For example, middle-income households, minority racial groups, and households with 

evaporative coolers or central AC face disproportionately high average or tail burdens, suggesting 

the need for targeted policies that are sensitive to subgroup-specific vulnerabilities. The disparities 

suggest that rising cooling needs could exacerbate existing inequalities in energy costs, particularly 

under extreme heat conditions. 

 

Methodologically, this study advances the growing literature on applying causal machine learning 

techniques in energy and climate research. By integrating CATE, CQTE, and CSQTE estimators 

with OLS projection, and employing robust treatment assignment strategies, the study generates 
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effects that are plausibly causal. This framework enhances the internal validity of the results and 

provides a replicable template for future empirical research on climate–energy interactions using 

high-dimensional observational data. The consistency of results across alternative treatment 

definitions further reinforces their credibility for informing both short-term heat adaptation 

measures and long-term climate resilience strategies. In practical terms, policies such as energy 

efficiency retrofits, targeted subsidies for high-efficiency cooling systems, and tailored demand-

side management programs can play a critical role in alleviating the disproportionate burden borne 

by high-risk households. 
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